Surgery – Instruments – Light application
Reexamination Certificate
2002-06-06
2004-11-23
Lee, Wilson (Department: 2821)
Surgery
Instruments
Light application
C372S092000, C315S20000A
Reexamination Certificate
active
06821272
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to lasers and, more particularly, to output optical energy distributions of lasers.
2. Description of Related Art
A variety of laser systems are present in the prior art. A solid-state laser system generally comprises a laser rod for emitting coherent light and a stimulation source for stimulating the laser rod to emit the coherent light. Flashlamps are typically used as stimulation sources for Erbium laser systems, for example. The flashlamp is driven by a flashlamp current, which comprises a predetermined pulse shape and a predetermined frequency.
The flashlamp current drives the flashlamp at the predetermined frequency, to thereby produce an output flashlamp light distribution having substantially the same frequency as the flashlamp current. This output flashlamp light distribution from the flashlamp drives the laser rod to produce coherent light at substantially the same predetermined frequency as the flashlamp current. The coherent light generated by the laser rod has an output optical energy distribution over time that generally corresponds to the pulse shape of the flashlamp current.
The pulse shape of the output optical energy distribution over time typically comprises a relatively gradually rising energy that ramps up to a maximum energy, and a subsequent decreasing energy over time. The pulse shape of a typical output optical energy distribution can provide a relatively efficient operation of the laser system, which corresponds to a relatively high ratio of average output optical energy to average power inputted into the laser system.
The prior art pulse shape and frequency may be suitable for thermal cutting procedures, for example, where the output optical energy is directed onto a target surface to induce cutting. New cutting procedures, however, do not altogether rely on laser-induced thermal cutting mechanisms. More particularly, a new cutting mechanism directs output optical energy from a laser system into a distribution of atomized fluid particles located in a volume of space just above the target surface. The output optical energy interacts with the atomized fluid particles causing the atomized fluid particles to expand and impart electromagnetically-induced mechanical cutting forces onto the target surface. As a result of the unique interactions of the output optical energy with the atomized fluid particles, typical prior art output optical energy distribution pulse shapes and frequencies have not been especially suited for providing optical electromagnetically-induced mechanical cutting. Specialized output optical energy distributions are required for optimal cutting when the output optical energy is directed into a distribution of atomized fluid particles for effectuating electromagnetically-induced mechanical cutting of the target surface.
SUMMARY OF THE INVENTION
The output optical energy distributions of the present invention comprise relatively high energy magnitudes at the beginning of each pulse. As a result of these relatively high energy magnitudes at the beginning of each pulse, the leading edge of each pulse comprises a relatively large slope. This slope is preferably greater than or equal to 5. Additionally, the full-width half-max (FWHM) values of the output optical energy distributions are greater than 0.025 microseconds. More preferably, the full-width half-max values are between 0.025 and 250 microseconds and, more preferably, are between 10 and 150 microseconds. The full-width half-max value is about 70 microseconds in the illustrated embodiment. A flashlamp is used to drive the laser system, and a current is used to drive the flashlamp. A flashlamp current generating circuit comprises a solid core inductor having an inductance of about 50 microhenries and a capacitor having a capacitance of about 50 microfarads.
The present invention, together with additional features and advantages thereof, may best be understood by reference to the following description taken in connection with the accompanying illustrative drawings.
REFERENCES:
patent: 5764672 (1998-06-01), Ukita et al.
patent: 6288499 (2001-09-01), Rizoiu et al.
patent: 6449301 (2002-09-01), Wu et al.
Kimmel Andrew I.
Rizoiu Ioana M.
BioLase Technology, Inc
Lee Wilson
Stout, Uxa Buyan & Mullins, LLP
LandOfFree
Electromagnetic energy distributions for electromagnetically... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Electromagnetic energy distributions for electromagnetically..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electromagnetic energy distributions for electromagnetically... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3312250