Electromagnetic compatibility testing device

Communications: radio wave antennas – Antennas – Measuring signal energy

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C324S627000

Reexamination Certificate

active

06795030

ABSTRACT:

The subject of the invention is a test device for measuring the electromagnetic radiation, immunity and characteristics of an object to be tested, comprising a conducting structure enclosing a test volume in which said object may be placed, said structure being provided with a closable aperture, said test device also including a system of internal conductors called septa, these being at least two in number, each septum being composed of at least one elementary conductor, each septum being connected to at least one and to at most two connectors passing through the structure, each connector being connected to at least one septum, each septum defining, in said test volume, by its arrangement in the structure, an electromagnetic coupling with said object, said electromagnetic coupling being specified by an electric coupling vector and a magnetic coupling vector defining an electromagnetic coupling plane.
Such devices are known and used at the present time, these being called transverse electromagnetic cells (TEM cells) which are distinguished principally by the geometry of their metal structure, by the number, shape and construction of the septa, by the arrangement of said septa in the structure and by the number of connectors.
The publication IEEE Transactions on Electromagnetic Compatibility Vol. 16, No. 4, November 1974:
“Generation of Standard EM Fields using TEM Transmission Cells”
(M. Crawford) describes the conventional TEM cell and its use for creating electromagnetic fields for the purpose of measuring the electromagnetic immunity of objects to be tested. The metal structure, of polyhedral shape, of this cell comprises a central section of parallepipedal shape between two pyramidal transition sections. Placed at each end of the transition sections is a connector that connects the two ends of a septum of hexagonal shape located at mid-height inside the structure. This cell is limited only in terms of high frequencies by the appearance of resonant modes that depend on the dimensions of the cavity formed by the metal structure, above which frequencies the transverse electromagnetic coupling mode is no longer verified.
The National Bureau of Standards Report NBS No. TN-1059 (PB83-165274) of October 1982:
“A Method to Quantify the Radiation Characteristics of an Unknown Interference Source”
(M. T. Ma and G. H. Koepke) describes a method of measuring electromagnetic radiation using a conventional TEM cell with one septum and two connectors, in which the object on test is placed in succession in several positions.
U.S. Pat. No. 4,837,581 describes a TEM cell of pyramidal shape whose septum of triangular shape is connected, on the one hand, to a connector placed at the end of the structure formed by the apex of the pyramidal shape and, on the other hand, to an array of loads which is connected to the other end of the structure formed by the base of the pyramidal shape. This cell, called a GTEM cell, has the feature of also possessing a system of elements that absorb the electromagnetic waves on the internal wall connected to the array of loads, making it possible to use it at frequencies well above those of the conventional TEM cell.
U.S. Pat. Nos. 5,754,054; 5,404,098; 5,825,331 and 5,430,456 describe methods of measuring electromagnetic radiation which are distinguished from the measurement method described in NBS Report No. TN-1059 by the number of positions and the orientations of the object to be tested and by the use of a GTEM cell.
U.S. Pat. No. 5,589,773 describes a radiation measurement method and a positioning system suitable for a GTEM cell, said positioning system making it possible to facilitate and automate the changes of orientation of the equipment under test.
Patent JP 05312866A describes a conventional TEM cell comprising a system for inserting the object to be tested, while Patent JP 05005763A describes a conventional TEM cell comprising, in the internal volume of the structure, elements intended for stirring the electromagnetic radiation.
U.S. Pat. No. 5,585,808; DE 3 925 247 A1; JP 02203281A; JP 04353774A; JP 05264620A and JP 06242161A describe TEM cells having a septum which are distinguished by the geometrical shape of their structure and by the geometrical shape and the arrangement of the septum inside the structure. Patent JP 10267975A describes a TEM cell which is distinguished from the cell described in patent JP 06242161A in that the internal walls of the structure are covered with a material that absorbs the electromagnetic energy.
U.S. Pat. No. 5,910,729 describes a TEM cell having two septa, each of them being connected at its two ends to a connector. The symmetrical arrangement of the two septa is designed to improve the electromagnetic coupling performance. U.S. Pat. No. 5,942,903 describes a TEM cell which is essentially distinguished from the cell described by U.S. Pat. No. 5,910,729 by the shape of the structure, by the particular construction of the septa and by their connection at one end to an array of loads. U.S. Pat. No. 5,861,753 describes a TEM cell which is distinguished from that described by U.S. Pat. No. 5,942,903 by the shape of the structure and in that it has three septa and two connectors, two of the three septa being arranged symmetrically in the structure and connected to only one of the connectors via a coupler.
U.S. Pat. No. 5,793,215 describes a TEM cell which is distinguished from the TEM cell described by U.S. Pat. No. 5,910,729 in that it has three septa of cylindrical shape which are connected to the two ends of the structure via six bushing connectors. Patent JP 11174102A describes a TEM cell which is essentially distinguished from the TEM cell described by U.S. Pat. No. 5,793,215 in that the three septa are of flat shape.
Patent JP 10185981A describes a TEM cell of mainly cylindrical shape, comprising a septum that rotates about the longitudinal axis of the structure, said septum being connected to a connector at each end of the structure. Furthermore, the TEM cell includes a rotary support for rotating the object on test about the vertical axis. Patent DE 196 01 348 C1 describes a TEM cell having a single two-position rotary septum.
U.S. Pat. Nos. 5,327,091 and 5,530,412 describe two methods of stirring the modes of a resonant cavity formed by a closed metal structure not provided with a septum, called a mode-stirring reverberation chamber inside which are placed in particular the object on test and an antenna transmitting electromagnetic energy.
In the abovementioned U.S. Pat. Nos. 5,910,729; 5,942,903; 5,861,753; 5,793,215 and KR 97-64814 comprising at least two septa, the electromagnetic coupling planes of said septa in the test volume are coincident, that is to say the electric and magnetic coupling vectors associated with each septum are oriented in a plane perpendicular to the longitudinal axis of the TEM cells. This is also the case with the TEM cells having a rotary septum that are described in patents KR 96-57363 and DE 196 01 348 C1, whatever the arrangement of the septum in the cell. In all cases, the electromagnetic characterization of the objects under test is therefore carried out in a two-dimensional reference frame of the same electromagnetic coupling plane. The TEM cells described in those patents have mainly been developed for measuring the electromagnetic characteristics of objects in several electromagnetic coupling polarizations within the same plane, in particular the vertical and horizontal polarizations, so as to reproduce the measurements made on an open site or in an anechoic chamber in which the object to be tested is placed at a certain distance from an antenna polarized vertically and then horizontally. The three-dimensional electromagnetic characterization of the object on test can then be obtained only by changing the orientation of the object on test in the test volume, as indicated in the NBS report No. TN-1059 and the U.S. Pat. Nos. 5,754,054; 5,404,098; 5,825,331; 5,430,456 and 5,589,773.
In the mode-stirring reverberation chambers described in the abovementioned U.S. Pat. Nos.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electromagnetic compatibility testing device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electromagnetic compatibility testing device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electromagnetic compatibility testing device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3207343

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.