Electrolytic treatment apparatus having replaceable and...

Chemistry: electrical and wave energy – Apparatus – Electrolytic

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C204S278500, C204S286100

Reexamination Certificate

active

06780292

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to devices for the electrolytic treatment of liquids, and more particularly to an electrolytic treatment apparatus that is arranged to provide for very rapid changes of electrode assemblies that are provided as complete, self-contained reactor cartridges, whereby to virtually eliminate maintenance down time of the treatment apparatus for electrode replacement, cleaning and other operational requirements.
Numerous electrolytic devices have been developed over the years for the treatment of liquids. Many of these treatment devices make use of a plurality of electrodes that are placed within a housing and connected to a DC power source. As the liquid is passed between the electrodes, contaminants precipitate and become separable. A wide variety of electrode geometries and configurations have been developed, with the idea that one geometry or configuration may treat or function better with different liquids and contaminants than others, or would require less power to operate.
Providing and managing clean water is the greatest problem faced by municipalities, industry and nations. For decades, the industry has relied primarily on chemicals to treat a number of aqueous solutions, including water for drinking, raw sewage, and industrial process fluids. However, increasingly high levels of pollution and the rapid decline of clean water sources is requiring industries of all types to seek better, more cost effective ways to improve treatment and remove a much higher percentage of contaminants. Chemicals are not only expensive, but they significantly reduce the amount of water that can be reclaimed and increase the amount of sludge that must be disposed. Chemicals also limit the percentage of contaminants than can be removed, making it difficult to meet present and future treatment requirements and near impossible to provide water suitable for reuse. Chemicals used for killing microorganisms within drinking water have also been shown as a health risk and is becoming less acceptable. Although several other methods have been developed and are presently being used for treating liquids, such as distillation, reverse osmosis, and ion exchange, these technologies either cost too much to operate, will not treat larger volumes of liquid, will not treat liquids containing high concentrations of suspended solids, or significantly reduce the amount of clean liquid that can be reclaimed.
Recent efforts to find better, more cost effective solutions for improving treatment requirements have raised considerable interest in other technologies that do not involve the use of chemicals. Industries and governments have begun looking into electrolytic treatment, which has been a long ignored but proven method for electrochemically precipitating and removing impurities from liquid. This type of electrolytic treatment typically involves a reaction housing that contains two or more electrodes spaced closely to each other and connected to a source of power, preferably Direct Current (DC). The liquid becomes treated as it is introduced between the electrodes and is subjected to an electrical field, causing impurities to precipitate to form a flocculent that is separable from the liquid using a number of mechanical and non mechanical methods, including filters, plate clarifiers, sedimentation, centrifugal separators, and floatation devices with skimmers.
In addition, the electrical field causes microorganisms to be killed, and other impurities of cellular nature to rupture, releasing liquid contained within them and further reducing the amount of produced sludge that must be handled or disposed. Also during the treatment process, hydrogen and oxygen gasses become present, furthering treatment by oxidizing the impurities. Electrolytic treatment offers a significant advantage over chemicals and many other methods of treating liquid, as it provides a much wider spectrum of treatment by precipitating and oxidizing impurities, destroying organisms, and dewatering sludge, all within a single pass between two or more electrodes that are connected to a source of power.
Numerous electrolytic devices have been developed through the years for the treatment of liquids using a number of different electrodes and configurations in an effort to provide improved performance. Among these improvements include distributing liquid more evenly between the electrodes, reducing electrical power consumption, preventing gasses and solids from being trapped in the housing, reducing the size and cost, reducing electrode wear and replacement time, or providing a method for treating larger liquid volumes.
Despite the many intended improvements, electrolytic devices have remained practically unheard of and rarely used in the industry. The reason for this is previous devices do not provide a quick and practical method for inserting and removing electrodes within the reaction housing for maintenance. Practical methods for providing maintenance is essential, as electrodes will often become coated with contaminants and/or dissolve in the water, requiring them to be removed from the housing either for cleaning or replacement. Different methods have been employed in the past to help solve many problems related to electrodes dissolving and collecting scalings or coatings, including reversing the polarity of the electrodes or shorting them to ground. These techniques will help extend the operational life expectancy of the electrodes; however, this can never fully replace having to perform maintenance on them.
Some commercial applications will cause the electrodes to coat within less than one hour, even with the use of polarity reversing. Methods for automatically cleaning electrodes while they remain in the housing also have been implemented into some devices using a combination of pumps, valving, and storage tanks for holding acidic cleaning solutions. This method has proven to work well; however, it requires additional space and is too expensive to incorporate into smaller devices. Despite the various attempts to reduce maintenance, a certain degree of manual maintenance is unavoidable and a practical method for providing maintenance is essential.
The problem with devices of the prior art is they employ cumbersome designs that make maintenance difficult, time consuming, and often labor-intensive. Several steps must be taken with previous devices in order to remove any coverings, support structures, and/or electrical connections before electrodes can be removed from the reaction housing for maintenance. The same amount of time taken to remove electrodes from previous devices is required to reinstall them back in the housing, which soon adds up to costly labor expenses, not to mention the necessary downtime while maintenance was being performed. In addition, previous devices consist of a specific reaction housing designed to function with a particular geometry of electrode. This prevents them from using other types of electrodes within the same housing that may be more readily available, cost less, or might work better with certain liquids. Additionally, these devices require the operator to source their own electrode material and fabricate them for replacement, instead of being able to simply purchase a cartridge containing the electrodes that could be installed in one easy step into the housing.
The frequency of electrode replacement due to dissolving in the liquid will depend on the size and quantity of the electrodes, duration of operation, and composition of the liquid being treated. Electrode replacement could be required within hours to weeks depending on the application. Some liquids contain contaminants that can coat the electrodes within minutes, preventing proper DC current transfer between them and requiring the electrodes to be frequently removed and cleaned. Although acid can be introduced directly into the housing of some devices to clean the electrodes, certain applications may not permit this, especially if the device is being used to treat drinking water.
Aside from electrodes disso

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electrolytic treatment apparatus having replaceable and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electrolytic treatment apparatus having replaceable and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electrolytic treatment apparatus having replaceable and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3322001

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.