Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Polymers from only ethylenic monomers or processes of...
Reexamination Certificate
2002-11-15
2004-02-17
Wu, David W. (Department: 1713)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
Polymers from only ethylenic monomers or processes of...
C526S256000, C526S259000, C526S270000, C345S039000, C345S046000, C362S555000, C362S545000, C362S800000
Reexamination Certificate
active
06693158
ABSTRACT:
FIELD OF THE INVENTION
The present invention is related to electroluminescent conjugated polymers modified with high electronegative heterocyclic groups suitable for use in the fabrication of polymeric light emitting diodes (PLED).
BACKGROUND OF THE INVENTION
The research of organic light emitting diodes started from 1963 by Pope et al (L. Chem. Phys. 38 (1963) 2042) using the single crystal of anthracene as the electroluminescent material, which emit blue light under high voltage. Although many scholars carried on the research and improvement (Phys. Rev. Lett. 14 (1965) 229; Sol. State Comm. 32 (1979) 683; Thin Solid Films 94 (1982) 476), the operating voltage was still too high, and the rate of energy conversion was low, hence there was little value for its application.
In the year 1987, Tang et al (Appl. Phys. Lett., 51 (1987) 914) made organic light emitting diodes having a structure of ITO/Diamine/Alq
3
/Mg:Ag by using evaporation, wherein ITO is a transparent electroconductive indium/tin oxide, Alq
3
is tris(8-hydroxyquinoline) aluminum. This device can achieve external quantum efficiency of 1% and brightness of 1000 cd/m
2
at 10V, which motivates a fast development in the research of organic light emitting diodes. Two years later, the research group of Carvendish laboratory in the Cambridge University used poly(phenylene vinylene) (hereinafter abbreviated as PPV) as the light emissive material, ITO as a positive electrode and Ca as a negative electrode to obtain a light emitting diode with a structure of ITO/PPV/Ca, which emits yellowish green light. The PPV has an external quantum efficiency 0.05% (Nature, 347 (1993) 539; U.S. Pat. Nos. 5,247,190 (1993); 5,425,125 (1995); 5,401,827 (1995)). The simplest kind of organic light emitting diode device has a single organic emissive layer sandwiched between a transparent electrode (as a positive electrode) and a metal electrode (as a negative electrode). In order to improve the electroluminescent (EL) efficiency of the organic light emitting diode devices, these devices can contain two organic layers, the first layer being a hole transport layer, and the second layer being the organic emissive layer; or the first layer being the organic emissive layer, and the second layer being an electron transport layer. These two layers are then placed between a transparent electrode (as the positive electrode) and a metal electrode (as the negative electrode). Moreover, there is an organic light emitting diode device containing three organic layers, which are arranged in an order of a hole transport layer, organic emissive layer, electron transport layer. These three layers are placed between the transparent positive electrode and the negative metal electrode. The light emitting process is activated by applying a forward bias across the electrodes, wherein, under the drive of the electric field, the hole and electron inject respectively from the positive and negative electrodes after overcoming their energy barrier, and then meet in the organic emissive layer to form an exciton. The exciton then decays from the excited state to the ground state by emitting a photon.
The PPV (poly(arylene vinylene)) due to its excellent electroluminescent property was widely used in the fabrication of light emitting diodes. However, this kind of conjugated polymer is not soluble in solvents and can not be molten by heating, therefore, the Wessling precursor route (U.S. Pat. No. 3,401,152 (1968); U.S. Pat. No. 3,706,677 (1972)) was used for its preparation. In the Wessling precursor route, an elimination reaction is carried out to form a fully conjugated polymer by coating the precursor and heating the resulting layer in vacuum. In order to simplify the fabrication of the devices, a long carbon chain like alkyl or alkoxy is introduced to the side chain of the poly(arylene vinylene). This can improve the polymer solubility (Polym. Preprint, 1 (1990) 505; U.S. Pat. No. 5,408,109 (1995); U.S. Pat. No. 5,679,757 (1997)), allowing it to be soluble in common organic solvents, and at the same time changing its energy gap. Beside that a block co-polymer containing a rigid segment and a flexible segment was first co-polymerized by Karasz (Macromolecules, 26 (1993) 1180; Macromolecules, 26 (1993) 6570) using the Wittig reaction, in which the rigid segment is arylene vinylene and the flexible segment may be alkyl, ether or ester. By controlling the length of the rigid segment one can alter the color of the emissive light. The flexible segment not only can block the conjugation, but also enhance the solubility and film-forming ability of the co-polymer.
Currently, the emissive colors of polymeric light emitting diodes (PLED) include blue, green and even infra-red light. The color of light of PLED can be determined by the selection of one single electroluminescent polymeric material (Syn. Met., 71 (1995) 2175; Syn. Met., 71 (1995) 2117; U.S. Pat. No. 5,514,878 (1996)), or by the processing condition of the same electroluminescent polymeric material (Nature, 356 (1992) 47). Blending of two or more electroluminescent polymeric materials can also be used to yield various colors of PLED including the white light (Jpn. J. Appl. Phys., 32 (1993) L921; J. Appl. Phys., 76 (1994) 2419; Nature, 372 (1994) 444).
The common conjugated conducting polymers are p-type materials which can be oxidized easily, hence their transporting rate of hole is faster than that of electron transporting rate. Consequently, these two injected charges can not reach equilibrium, and thus the EL efficiency of the PLED is low.
In order to enhance the EL efficiency of the organic light emitting diode device, an additional electron transport layer (ETL) can be added to obtain a multilayer diode device with an improved quantum efficiency. This electron transport layer can be of (1) a thin film of electron transport material having a small heterocyclic molecule (like 2-(4-biphenylyl)-5-(4-tert-butylhenyl)-1,3,4-oxadiazole, PBD) evaporated onto the light emissive layer (Adv. Mater., 12 (1996) 979, Adv. Mater., 9 (1997) 127); (2) a thin layer formed on the light emissive layer by coating a solution of a blend of the small molecular electron transport material and an inert polymer such as poly(methyl methacrylate) (PMMA) (Appl. Phys. Lett., 61 (1992) 2793; J. Electron. Mater., 7 (1993) 745); (3) a thin layer formed on the light emissive layer by coating a solution of a traditional polymer such as poly(methacrylate) (PMA) having a side chain of a high electronegative heterocyclic moiety (Science, 267 (1995) 1969); and (4) a thin layer formed on the light emissive layer by coating a solution of a conjugated or non-conjugated polymer having a high electronegative heterocyclic moiety incorporated to the backbone thereof (Appl. Phys. Lett., 69 (1996) 881; Adv. Mater., 7 (1995) 830; Chem. Mater., 7 (1995) 1568; Appl Phys. Lett., (1996) 2346).
Other than the multilayer structure described above, the blends of emissive materials and charge transport materials as a single active layer have also been developed to achieve the goal of improving the performance. There were 1) a direct blend of an electron transport material of a small organic molecule containing a high electronegative heterocyclic moiety and the emissive material (J. Electron. Mater., 5 (1994) 453; Macromolecules, 28 (1995) 1966; Jpn. J. Appl. Phys., 34 (1995) L1237); (2) a traditional polymer grafted with side chains of a high electronegative heterocyclic moiety and an emissive moiety (Macromolecules, 30 (1997) 3553); Syn. Met., 84 (1997) 437; Adv. Mater., 7 (1995) 898); and (3) a conjugated or non-conjugated polymer having a high electronegative heterocyclic moiety incorporated to the backbone thereof (Adv. Mater., 9 (1997) 1174; Polym. Preprint, 39 (1997) 103).
Although the above single and multilayer structures can improve the performance of the light emitting diode devies, they also have the following disadvantages. (1) When the electron transport material of the small organic molecules is evaporated on the emissive layer or is coated thereof after
Chen Show-An
Lee Yuh-Zheng
Cheung William
Fish & Richardson
National Science Council
Wu David W.
LandOfFree
Electroluminiscent conjugated polymers modified with high... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Electroluminiscent conjugated polymers modified with high..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electroluminiscent conjugated polymers modified with high... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3308817