Electroluminescent element and method of producing the same

Electric lamp or space discharge component or device manufacturi – Process – With assembly or disassembly

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C313S498000, C313S504000, C428S690000, C427S532000

Reexamination Certificate

active

06575800

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to the construction of electroluminescent elements in which light-emitting thin films are used which can be employed, for example, as displays for lap-top computers, televisions and mobile communications, and a method for their manufacture.
2. Description of the Related Art
Light-emitting elements in which the electroluminescence of organic compounds is employed are auto-luminescent and so they have a high visibility, since they are completely solid elements they have excellent impact resistance and since they are also characterized by a low drive voltage they are clearly useful as light emitting elements for various types of display equipment.
Clearly multi-color elements like those seen in Braun tubes (CRT) and liquid crystal displays (LCD) will be required to extend the range of application of the abovementioned organic EL elements as display elements.
The following methods, for example, were known as means of producing multi-color display apparatus using EL elements in the past. (1) Methods in which EL materials which emit light of the three colors red (R), green (G) and blue (B) are arranged in a matrix (Japanese Laid-open Patent Publications Sho.57-157487, Sho.58-145989 and H3-214593 for example). (2) Methods in which the three primary colors RGB are realized by combining color filters with EL elements which emit white light (Japanese Laid-open Patent Publications H1-315988, H2-273496, H3-194895 for example). (3) Methods in which EL elements which emit blue light and fluorescent conversion elements are combined for conversion to provide the three primary colors RGB (Japanese Laid-open Patent Publication H3-152897).
However, the methods described under (1) above must have three types of light emitting material arranged in a very finely divided manner in a matrix and so the technology is complex and the product cannot be manufactured cheaply, and since the life expectancies of the three types of light emitting material will generally be quite different there is a further disadvantage in that there will inevitably be a displacement of the color balance with the passage of time. Furthermore, the methods described in (2) make use of some of the light output from EL elements which emit white light using color filters and so there is a disadvantage in that the utilization efficiency of the EL light, which is to say the conversion efficiency, is low. For example, the white EL light simply comprises the three primary colors RGB which are of equal intensity and if the colors are obtained from this using color filters then at the most only a 33% conversion efficiency can be obtained. In practice, when the emission spectrum and visual perception are taken into consideration then only a much lower conversion efficiency can be obtained. On the other hand, if the three primary colors RGB could be obtained with conversion efficiencies of more than 33% respectively with the methods described under (3) these would be better methods than those described under (2) above.
Thus, methods in which fluorescent conversion films are arranged in the lamination direction over the EL elements, thus changing the EL emission color, are known (Japanese Laid-open Patent Publications Sho.63-18139, H3-152897). Since blue is emitted by the organic EL elements, the conversion efficiency can be 100%. Furthermore, an 80% conversion efficiency can be achieved using coumarin 153 as disclosed in Japanese Laid-open Patent Publication H3-152897 for green. Furthermore, a method of converting EL element blue light to red with a conversion efficiency of more than 33% has been disclosed in Japanese Laid-open Patent Publications H8-286033.
Thus, the fluorescent conversion method is superior as a means of achieving a full color display, but in terms of the actual method of manufacture, processes similar to the those for the color filters which are used conventionally in color liquid crystal display apparatus are required to manufacture a fluorescent conversion film and there is a problem in that this is very expensive.
SUMMARY OF THE INVENTION
The present invention is intended to overcome these weaknesses in the conventional technology. An object of the present invention is to provide electroluminescent elements with which the emitted light of a blue light emitting organic EL element can be converted to other colors with a high conversion efficiency of at least 33% and to provide a method of manufacture whereby these color electroluminescent elements can be manufactured cheaply using an ink-jet method.
The electroluminescent elements of this invention are characterized in that they comprise a light emitting layer comprised of a fluorescent first compound with is arranged in a plane between a cathode and an anode. A hole injection transport layer comprising a mixture of a second compound which absorbs the fluorescence generated by the aforementioned first compound and emits a longer wavelength than the aforementioned fluorescence. A compound which has a charge injection/transportation capacity is arranged between the aforementioned anode and the aforementioned light emitting layer. By this means, the second compound layer is arranged on the light output side and so all of the light emitted from the light emitting layer which is formed by the first compound falls on the second compound layer, is absorbed by the second compound and discharged after being wavelength converted, and so the color purity is high.
If, in this case, the construction is such that the concentration of the aforementioned second compound has a gradient along a thickness direction of the light emitting layer perpendicular to the plane and the aforementioned hole injection transport layer then movement of the holes is facilitated and the light emission efficiency is improved.
Furthermore, another electroluminescent element of the invention is characterized in that it is comprises a light emitting layer having a mixture of a fluorescent first compound and a second compound which absorbs the fluorescence emitted by the aforementioned first compound and emits fluorescence of longer wavelength that the aforementioned fluorescence which is a arranged between an anode and a cathode, and in that it is established in such a way that the concentration of the aforementioned second compound with respect to the aforementioned first compound in the aforementioned light emitting layer varies with a gradient along the thickness direction of said light emitting layer. Moreover, such elements are characterized in that the proportions of the aforementioned first compound and the aforementioned second compound are from 99.9:0.1 to 90:10. With such constructions, the charge injected from the electrodes reaches the light emitting layer with good efficiency and so the light emitting layer comprising mainly the first compound emits the fluorescence of the first compound and then this fluorescence and the fluorescence which has been reflected by the cathode is absorbed directly and indirectly with good efficiency by the second compound and the second compound emits its own fluorescence. In this case there is no distinct interface between the first compound and the second compound and so direct energy transfer occurs at the same time as the energy transfer by means of light and the conversion efficiency is improved.
Furthermore, another such element is characterized in that a charge injection transport layer is formed between the aforementioned light emitting layer and the electrodes in the aforementioned electroluminescent element. With this construction charge injection in the aforementioned construction is achieved with greater efficiency with the result that the light emitting efficiency is also improved.
These elements are also characterized in that the first and second compounds used in the abovementioned electroluminescent elements are organic compounds or organometallic compounds. The drive voltage can be greatly reduced in this way.
These elements are also characterized in that the sur

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electroluminescent element and method of producing the same does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electroluminescent element and method of producing the same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electroluminescent element and method of producing the same will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3155449

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.