Electroless plating process for alternative memory disk...

Stock material or miscellaneous articles – Web or sheet containing structurally defined element or... – Physical dimension specified

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S336000, C428S065100, C428S065100, C428S690000, C428S690000, C428S690000, C428S900000, C427S129000, C427S131000, C427S132000, C204S192200

Reexamination Certificate

active

06316097

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a method of manufacturing a magnetic recording medium, such as a thin film magnetic recording disk. The invention has particular applicability in manufacturing low noise, high areal recording density magnetic recording media utilizing alternative substrates having a greater Young's Modulus than conventional aluminum (Al)-based substrates.
BACKGROUND OF THE INVENTION
Magnetic media are widely used in various applications, particularly in the computer industry. A conventional longitudinal recording disk medium
1
used in computer-related applications is schematically depicted in FIG.
1
and comprises a non-magnetic metal substrate
10
, typically of an aluminum (Al) alloy, such as an aluminum-magnesium (Al—Mg) alloy having sequentially deposited thereon a plating layer
11
, such as of amorphous nickel-phosphorus (Ni—P), a polycrystalline underlayer
12
, typically of chromium (Cr) or a Cr-based alloy, a magnetic layer
13
, e.g., of a cobalt (Co)-based alloy, and a protective overcoat layer
14
, typically containing carbon (C). The Co-based alloy magnetic layer
13
deposited by conventional techniques, e.g., sputtering, normally comprises polycrystallites epitaxially grown on the polycrystalline Cr or Cr-based alloy underlayer
12
.
In operation of medium
1
, the magnetic layer
13
can be locally magnetized by a write transducer, or write head, to record and store information. The write transducer creates a highly concentrated magnetic field which alternates direction based on the bits of information being stored. When the local magnetic field produced by the write transducer is greater than the coercivity of the recording medium layer
13
, then the grains of the polycrystalline medium at that location are magnetized. The grains retain their magnetization after the magnetic field produced by the write transducer is removed. The direction of the magnetization matches the direction of the applied magnetic field. The magnetization of the recording medium can subsequently produce an electrical response in a read transducer, allowing the stored information to be read.
Thin film magnetic recording media are conventionally employed in disk form for use with disk drives for storing large amounts of data in magnetizable form. Typically, one or more disks are rotated on a central axis in combination with data transducer heads. In operation, a typical contact start/stop (CSS) method commences when the head begins to slide against the surface of the disk as the disk begins to rotate. Upon reaching a predetermined high rotational speed, the head floats in air at a predetermined distance from the surface of the disk due to dynamic pressure effects caused by air flow generated between the sliding surface of the head and the disk. During reading and recording operations, the transducer head is maintained at a controlled distance from the recording surface, supported on a bearing of air as the disk rotates, such that the head can be freely moved in both the circumferential and radial directions, allowing data to be recorded on and retrieved from the surface of the disk at a desired position. Upon terminating operation of the disk drive, the rotational speed of the disk decreases and the head again begins to slide against the surface of the disk and eventually stops in contact with and pressing against the disk. Thus, the transducer head contacts the recording surface whenever the disk is stationary, accelerated from the static position, and during deceleration just prior to completely stopping. Each time the head and disk assembly is driven, the sliding surface of the head repeats the cyclic sequence consisting of stopping, sliding against the surface of the disk, floating in the air, sliding against the surface of the disk, and stopping.
It is considered desirable during reading and recording operations to maintain each transducer head as close to its associated recording surface as possible, i.e., to minimize the flying height of the head. Thus, a smooth recording surface is preferred, as well as a smooth opposing surface of the associated transducer head, thereby permitting the head and the disk to be positioned in close proximity, with an attendant increase in predictability and consistent behavior of the air bearing supporting the head during motion. However, if the head surface and the recording surface are too flat, the precision match of these surfaces gives rise to excessive stiction and friction during the start-up and stopping phases of the cyclic sequence, thereby causing wear to the head and recording surfaces, eventually leading to what is referred to as “head crash”. Thus, there are competing goals of reducing head/disk friction and minimizing transducer flying height.
Conventional practices for addressing these apparent competing objectives involve providing a magnetic disk recording medium with a toughened recording surface to reduce head/disk friction by techniques generally known as “texturing”. Conventional texturing techniques involve polishing the surface of a disk substrate to provide a texture thereon prior to subsequent deposition thereon of layers, such as an underlayer, a magnetic layer, a protective overcoat, and a lubricant topcoat, wherein the textured surface of the underlying substrate is intended to be substantially replicated in the subsequently deposited layers.
A variety of techniques, including laser-based techniques, have been developed for texturing metal-based magnetic recording medium substrates, e.g., the Ni—P plated Al-based substrates described supra. Such substrates, however, exhibit low head impact resistance due to the low mechanical yield strength (e.g., as reflected by Young's Modulus values less than about 72 Gpa), thereby limiting their utility such that they are not particularly desirable for use in mobile computer data storage applications, such as lap-top computers. As compared to conventional, Ni—P plated, Al-based substrates, glass, glass-ceramic, ceramic, and metal-ceramic substrates having greater values of Young's modulus exhibit superior shock resistance. Accordingly, such “alternative” substrates are desirable candidates for use in data storage applications, particularly mobile computer applications. In addition to the requirement for good shock resistance, the “alternatives” type substrates are required to provide good vibration performance, especially when utilized in high rpm disk drives.
A number of advanced, high track per inch (TPI), low track misregistration (TMR), and non-repeatable run-out (NRRO) alternative substrates have been proposed for use in hard disk drive applications. However, none of the proposed alternative substrates has been utilized for the manufacture of practical disk drives, for the following reasons:
1. Poor lapability/grindability: in general, the glass, ceramic, and glass-ceramic and metal-ceramic composite materials contemplated for use as hard disk substrates are extremely difficult to lap or grind according to conventional techniques. More specifically, pure ceramic materials such as alumina (Al
2
O
3
) are too hard to grind, and metal-ceramic composites (e.g., ceramic within a metal matrix) contain at least two non-uniform phases, i.e., a soft phase and a hard phase, which make the grinding process even more difficult. Moreover, the ultimate cost for grinding such substrates is significantly higher than that for conventional Ni—P plated, Al-based substrates.
2. Poor platability: due to the multi-phase nature and multi-crystal features of such alternative substrates, plating of a Ni—P seed layer for ensuring proper polycrystallinity of a Cr-based underlayer is necessary, as in the case of conventional Al-based substrates. However, the requirements for low TMR and high TPI require formation of Ni—P seed layers with defect-free surfaces after plating and/or polishing, with an attendant requirement for planarity which is higher than that required for conventional Al-based substrates. To date, none of the tested alternative subs

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electroless plating process for alternative memory disk... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electroless plating process for alternative memory disk..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electroless plating process for alternative memory disk... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2601744

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.