Electrode with a helical attachment

Electric lamp and discharge devices – With gas or vapor – Having particular electrode structure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C313S628000, C313S574000, C313S631000, C313S632000, C313S335000

Reexamination Certificate

active

06201349

ABSTRACT:

TECHNICAL FIELD
The invention proceeds from an electrode in accordance with the preamble of claim
1
. At issue here, in particular, are electrodes for high-pressure discharge lamps, but also holders for the helically wound luminous elements of an incandescent lamp.
PRIOR ART
U.S. Pat. No. 5,451,837 has already disclosed an electrode for high-pressure discharge lamps in which the core pin has a symmetrical notch or a symmetrical bulge. The aim is to ensure better retention for the pushed-on helix. The disadvantage of this construction is that it is scarcely suitable for small lamp powers. The reason for this is that very small core pins are used in that case, and they are consequently difficult to work mechanically.
WO 95/30237 has disclosed a high-pressure discharge lamp for small lamp powers whose electrode is fitted with an excentric core pin. The irregular or else symmetrical deformations of the core pin extend over the entire region of the core pin onto which the helix is pushed. They must be produced with a high outlay by means of a grinding process. Such a core pin is very difficult to produce, bearing in mind that the diameter of the core pin is only of the order of magnitude of 150 to 700 &mgr;m. The mechanical working of such a small core pin by the grinding process described requires a very high outlay and is subject to a high rejection rate.
U.S. Pat. No. 4,812,710 has disclosed a halogen incandescent lamp whose electrodes hold the doubly helically wound luminous element as inner supply leads. Constructed on the ends of the supply leads are symmetrical flats over which the end of the luminous element is pushed. This arrangement is difficult to automate.
SUMMARY OF THE INVENTION
It is the object of the present invention to provide an electrode in accordance with the preamble of claim
1
which can be produced easily and with a low rejection rate and permits the pushed-on helix to be held very reliably.
This object is achieved by means of the characterizing features of claim
1
. Particularly advantageous refinements are to be found in the dependent claims.
The electrode according to the invention is produced from high-melting, electrically conducting material, preferably tungsten, although molybdenum or tantalum may also be considered. The electrode comprises a core pin, which normally has a cylindrical cross section, but can also be elliptical or flattened. A helical member is pushed onto the end of this core pin. It can project at the tip of the core pin, or also already terminate before it. In the case of high-pressure discharge lamps, this helical member can either regulate the heat budget of the electrode, or serve as a holder for an emitter material inserted between the turns of the helical member. In the case of an incandescent lamp, preferably a halogen incandescent lamp, the electrode is constructed as an inner supply lead. The pushed-on helical member is the end of the luminous element in this case.
According to the invention, a boss projecting beyond the diameter of the core pin is laterally constructed on the core pin at a spacing from the tip. A typical value for the projection of the boss is 10 &mgr;m. In this case, the helical body is pushed onto the core pin with at least one turn as far as behind the boss.
It is advantageous to arrange a second boss on the side of the core pin opposite the first boss. This improves the retention of the helical member. It is preferred for the second boss to be arranged offset with respect to the first boss, specifically such that the spacing between the two bosses measured on the longitudinal axis is adapted to the geometry of the helical member. If the helical member is wound without a pitch, so that the individual turns touch one another, offsetting the second boss by half the wire diameter of the helical member is particularly suitable. If the helical member is wound with a pitch, so that the individual windings are spaced apart, it is advantageous for the two bosses to be offset with respect to one another by half the pitch of the helical member. It is always ensured in this way that the helical member latches between the two bosses and is held there optimally.
In principle, it is also possible to use more than two bosses in the case of a relatively long helical member.
A particularly secure retention is achieved in the case of an electrode for a high-pressure discharge lamp when the boss(es) is or are arranged approximately centrally relative to the helical member. In this case, the helical member is singly helically wound and comprises approximately four to ten turns. The self-retaining force of such a helical member owing to spring action is relatively slight. A relatively large projection of the boss beyond the surface of the core pin is preferred in this case. A typical value is 10 to 30 &mgr;m.
The doubly helically wound ends of the luminous element are frequently used as helical members for halogen incandescent lamps. These ends have a large spring action with a high self-retaining force, so that a relatively slight projection (5 to 10 &mgr;m) suffices in this case.
This retaining system based on bosses on the core pin is particularly suitable for lamps of low power, for example between 35 and 150 W. With these lamps, the electrodes are very small and can be mechanically worked only with difficulty. Typical diameters of the core pin are approximately 150 to 1000 &mgr;m. The retaining system presented here is, however, in principle also still suitable for larger diameters of the core pin, for example up to 5 mm. The wire diameter of the helical member is preferably approximately 10 to 50% of the diameter of the core pin.
So that the helical member is securely retained on the core pin, it is expedient for the projection of the boss beyond the core pin to be approximately 5 to 30 &mgr;m. The diameter of the wire for the helical member is of the order of magnitude of approximately 50 to 500 &mgr;m. Whereas in the case of known retaining techniques which are based on a change in the cross section of the core pin the circumference of the core pin remains unchanged or greatly enlarged, in the case of the retaining technique according to the invention it is effectively only slightly enlarged, specifically by approximately 3 to 10%. The particular advantage of the retaining technique according to the invention is, in this case, that the use of the two offset bosses whose spacing is adapted to the turns of the helical member permits an optimum retaining effect to be achieved without a large outlay of force. Threading the helical member can be done easily and reliably. Overall, this retaining technique can be automated very easily and is subject to a low rejection rate. Because the enlargement of the circumference of the core pin in the region of the individual boss can be kept relatively small, it is possible to produce it by a simple stratagem.
A particularly suitable method for producing an electrode as described above consists in that a core pin is irradiated laterally with a laser beam so that the material of the core pin melts locally and forms a boss, the helical member subsequently being pushed onto the core pin beyond the boss. This method can easily be modified (for example by means of a beam splitter) such that a core pin is simultaneously irradiated from two sides with a laser beam, so that two bosses are formed. The laser beam, generally a high-power Nd:YAG laser with a wavelength of 1064 nm is focused in this case onto the location of the core pin provided for forming the boss. The power of the laser is set such that the material of the core pin melts and owing to the surface tension, forms a knob(boss) which is frequently located in a depression. In the case of this working technique, the material of the core pin is neither removed nor added to. It is merely rearranged. The depression constructed around the boss is, however, so narrow that the helical member does not notice the depression, but instead does indeed sense the projection of the boss very well.
In the case of the known notches and flats on

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electrode with a helical attachment does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electrode with a helical attachment, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electrode with a helical attachment will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2527075

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.