Surgery – Diagnostic testing – Structure of body-contacting electrode or electrode inserted...
Reexamination Certificate
1999-12-01
2003-04-15
Layno, Carl (Department: 3762)
Surgery
Diagnostic testing
Structure of body-contacting electrode or electrode inserted...
C607S115000, C128S907000
Reexamination Certificate
active
06549797
ABSTRACT:
BACKGROUND OF THE INVENTION
This invention relates generally to percutaneous electrical therapy systems for medical use. In particular, the invention relates to an electrode remover for removing percutaneously inserted electrodes from a patient's tissue.
Electrical therapy has long been used in medicine to treat pain and other conditions. For example, transcutaneous electrical nerve stimulation (TENS) systems deliver electrical energy through electrode patches placed on the surface of a patient's skin to treat pain in tissue beneath and around the location of the patches. The efficacy of TENS systems in alleviating pain is questionable at best, however.
More recently, a technique in which electrodes are placed through the patient's skin into the target tissue has been proposed. Percutaneous Neuromodulation Therapy (“PNT”) (also sometimes called Percutaneous Electrical Nerve Stimulation or “PENS”) using percutaneously placed electrodes achieves significantly better pain relief results than TENS treatments using skin surface electrodes. This therapy is described in Ghoname et al., “Percutaneous Electrical Nerve Stimulation for Low Back Pain,” JAMA 281:818-23 (1999); Ghoname et al, “The Effect of Stimulus Frequency on the Analgesic Response to Percutaneous Electrical Nerve Stimulation in Patients with Chronic Low Back Pain,” Anesth. Analg. 88:841-6 (1999); Ahmed et al., “Percutaneous Electrical Nerve Stimulation (PENS): A Complementary Therapy for the Management of Pain Secondary to Bony Metastasis,” Clinical Journal of Pain 14:320-3 (1998); and Ahmed et al., “Percutaneous Electrical Nerve Stimulation: An Alternative to Antiviral Drugs for Herpes Zoster,” Anesth. Analg. 87:911-4 (1998). The contents of these references are incorporated herein by reference.
Thus far, PNT practitioners have used percutaneously placed acupuncture needles attached to waveform generators via cables and alligator clips to deliver the therapy to the patient. This arrangement and design of electrodes and generator is far from optimal. For example, removal of percutaneous electrodes has thus far been a cumbersome operation. It has also been dangerous, since the prior art has not addressed the issue of sharps protection for the patients' caregivers and other bystanders. It is therefore an object of this invention to provide a more efficient electrode remover and to reduce the exposure of electrical therapy patients' caregivers to accidental exposure to bloodborne pathogens, microbes, toxins, etc., via an injury caused by unintended contact with a sharp electrode.
It is a further object of this invention to provide a percutaneous electrical therapy system having electrodes and electrode assemblies that are safe, efficacious, inexpensive and easy to use.
Other objects of the invention will be apparent from the description of the preferred embodiments.
SUMMARY OF THE INVENTION
The invention is a percutaneous electrode remover. In a preferred embodiment, the remover includes a housing adapted to be held in a user's hand, the housing having an aperture at a distal end; and an actuator operable by a user to move a percutaneously inserted electrode through the aperture and completely into the housing.
In some embodiments, the remover also includes an electrode engager adapted to engage an exposed portion of an electrode upon operation of the actuator.
In some embodiments of the remover, the actuator is further adapted to be operated by a user's thumb to move the electrode through the aperture.
In some embodiments, the remover also includes a used electrode holder adapted to hold a plurality of electrodes that had been moved into the housing by operation of the actuator.
In some embodiments of the remover, aperture is adapted to cooperate with an alignment element to align the introducer with an electrode insertion site.
The invention is described in more detail below with reference to the drawings.
REFERENCES:
patent: 3030959 (1962-04-01), Grunert
patent: 3090151 (1963-05-01), Stewart et al.
patent: 3208452 (1965-09-01), Stern
patent: 3938526 (1976-02-01), Anderson et al.
patent: 3943935 (1976-03-01), Cameron
patent: 3983881 (1976-10-01), Wickham
patent: 4139011 (1979-02-01), Benoit et al.
patent: 4153059 (1979-05-01), Fravel et al.
patent: 4207903 (1980-06-01), O'Neill
patent: 4256116 (1981-03-01), Meretsky et al.
patent: 4262672 (1981-04-01), Kief
patent: 4281659 (1981-08-01), Farrar et al.
patent: 4284856 (1981-08-01), Hochmair et al.
patent: 4381012 (1983-04-01), Russek
patent: 4408617 (1983-10-01), Auguste
patent: 4431000 (1984-02-01), Butler et al.
patent: 4437467 (1984-03-01), Helfer et al.
patent: 4541432 (1985-09-01), Molina-Negro et al.
patent: 4556064 (1985-12-01), Pomeranz et al.
patent: 4685466 (1987-08-01), Rau
patent: 4686996 (1987-08-01), Ulbrich
patent: 4712558 (1987-12-01), Kidd et al.
patent: D297047 (1988-08-01), Hon et al.
patent: 4765310 (1988-08-01), Deagle et al.
patent: 4895154 (1990-01-01), Bartelt et al.
patent: 4934371 (1990-06-01), Malis et al.
patent: 4949734 (1990-08-01), Bernstein
patent: 4979508 (1990-12-01), Beck
patent: 5012811 (1991-05-01), Malis et al.
patent: D318330 (1991-07-01), Doty et al.
patent: 5036850 (1991-08-01), Owens
patent: 5054486 (1991-10-01), Yamada
patent: 5094242 (1992-03-01), Gleason et al.
patent: 5117826 (1992-06-01), Bartelt et al.
patent: 5211175 (1993-05-01), Gleason et al.
patent: 5246014 (1993-09-01), Williams et al.
patent: 5281218 (1994-01-01), Imran
patent: 5332401 (1994-07-01), Davey et al.
patent: D357069 (1995-04-01), Plahn et al.
patent: 5439440 (1995-08-01), Hofmann
patent: 5449378 (1995-09-01), Schouenborg
patent: 5593429 (1997-01-01), Ruff
patent: 5649936 (1997-07-01), Real
patent: 5682233 (1997-10-01), Brinda
patent: 5702359 (1997-12-01), Hofmann et al.
patent: 5810762 (1998-09-01), Hofmann
patent: 5851223 (1998-12-01), Liss et al.
patent: 5861015 (1999-01-01), Benja-Athon
patent: 5873849 (1999-02-01), Bernard
patent: 5928144 (1999-07-01), Real
patent: 5941845 (1999-08-01), Tu et al.
patent: 5968011 (1999-10-01), Larsen et al.
patent: 5968063 (1999-10-01), Chu et al.
patent: 6009347 (1999-12-01), Hofmann
patent: 6035236 (2000-03-01), Jarding et al.
patent: 6050992 (2000-04-01), Nichols
patent: 6068650 (2000-05-01), Hofmann et al.
patent: 6117077 (2000-09-01), Del Mar et al.
patent: 6122547 (2000-09-01), Benja-Athon
patent: 6208893 (2001-03-01), Hofmann
patent: 6269270 (2001-07-01), Boveja
patent: 6355021 (2002-03-01), Nielsen et al.
patent: 2500745 (1982-09-01), None
AAMI Neurosurgery Committee; AAMI Implantable Neurostimulator Subcommittee. Implantable peripheral nerve stimulators. Assoc. for the Advancement of Medical Instrumentation (1995) NS15-1995, cover-8, 11 pages.**
Almay, B.G.L. et al., “Long-Term High-Frequency Transcutaneous Electrical Nerve Stimulation (hi-TNS) in Chronic Pain. Clinical Response and Effects of CSF-Endorphins, Monoamine Metabolites, Substance P-Like Immunoreactivity (SPLI) and Pain Measures”, J. Physchosom.Res. (1985) 29:247-257, 11 pages.
Baker, L. et al., “Effects of Waveform on Comfort During Neuromuscular Electrical Stimulation”, Clinical Orthopedics and Related Research (Aug. 1988) 233:75-85.
Balogun, J., “Effects of Ramp Time on Sensory, Motor and Tolerance Thresholds During Exogenous Electrical Stimulation”, The Journal of Sports Medicine and Physical Fitness (Dec. 1991) 3:4, 521-526.
BD Safety Products. BD Vacutainer Safety-Lok Blood Collection Set; BD Vacutainer SafetyGlide Blood Collection Assembly and BD Vacutainer Eclipse Blood Collection Needle, 1 page.
BD Safety Flow Lancet—Product No. 366356. BD catalog 1997-2000, Capillary Access, http://catalog.bd.com/scripts/OBDsheet.exe?FNC=productlist_Alistproducts_html_366356 (Aug. 7, 2001) (3 pages).
BD Vacutainer SafetyGlide Blood Collection Assembly. Quick Reference Card (1999), 1 page.
Brull, S., Silverman, D.G., “Pulse Width, Stimulus Intensity, Electrode Placement, and Polarity During Assessment of Neuromuscular Block”, Anesthesiology (Oct. 1995) 83:702-709.
Carroll, D., “Randomization is Important
Bishay Jon M.
Leonard Paul
Layno Carl
Perkins Coie LLP
Vertis Neuroscience, Inc.
LandOfFree
Electrode remover for a percutaneous electrical therapy system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Electrode remover for a percutaneous electrical therapy system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electrode remover for a percutaneous electrical therapy system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3019259