Electrode interface for high-dielectric-constant materials

Semiconductor device manufacturing: process – Making passive device – Stacked capacitor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S003000, C438S244000, C438S387000, C438S253000

Reexamination Certificate

active

06362068

ABSTRACT:

FIELD OF THE INVENTION
This invention generally relates to improving the electrode interface for materials with high-dielectric-constants, such as in the construction of capacitors.
BACKGROUND OF THE INVENTION
Without limiting the scope of the invention, its background is described in connection with current methods of forming electrical connections to high-dielectric-constant materials, as an example.
The increasing density of integrated circuits (e.g. DRAMs) is increasing the need for materials with high-dielectric-constants to be used in electrical devices such as capacitors. The current method generally utilized to achieve higher capacitance per unit area is to increase the surface area/unit area by increasing the topography, such as in trench and stack capacitors using SiO
2
or SiO
2
/Si
3
N
4
as the dielectric. This approach becomes very difficult in terms of manufacturability for devices such as the 256 Mbit and 1 Gbit DRAMs.
An alternative approach is to use a high permittivity dielectric material. Many perovskite, ferroelectric, or high-dielectric-constant (hereafter abbreviated HDC) oxides such as (Ba,Sr)TiO
3
(BST) usually have much larger capacitance densities than standard SiO
2
—Si
3
N
4
—SiO
2
capacitors. Many different materials, such as RuO
2
and Pt, have been proposed for the electrodes for HDC materials. To be useful in electronic devices, the electrode/HDC material interface should generally form a connection with good overall electrical characteristics.
SUMMARY OF THE INVENTION
As used herein the term moderate-dielectric-constant (hereafter abbreviated MDC) means having a dielectric constant greater than about 150. HDC materials (i.e. having a dielectric constant of greater than about 300) are useful for the fabrication of many electrical devices, such as capacitors. Many thin-film (generally less than 5 um) applications require a small leakage-current-density in addition to a large capacitance per unit area, so it is important to find methods which reduce the leakage current but do not substantially degrade the capacitance. The leakage current is sensitive to many variables such as thickness, microstructure, electrodes, electrode geometry and composition. In particular, it appears that the leakage current is controlled by Schottky barriers. For example, the leakage current of lead zirconium titanate (PZT) using RuO
2
electrodes is several orders of magnitude larger than the leakage current of PZT using Pt electrodes. The smaller leakage current with Pt electrodes appears to be due to the larger work function.
One method of controlling the leakage current is to control the materials at the electrode/ dielectric interface. MDC materials (e.g. SrTiO
3
(ST)) generally have lower leakage-current-density (and lower permittivity) than HDC materials (e.g. BST) with the same thickness and electrodes. Surrounding the relatively higher permittivity HDC material with a thin layer of an MDC material generally results in a structure with lower leakage current yet relatively little dielectric constant degradation. Thin layers of the MDC material at the electrode interface(s) would have essentially the same effect.
The disclosed structures generally provide the high permittivity of HDC materials, with relatively smaller leakage currents when compared to structures in which the dielectric is all HDC material. One embodiment of this invention comprises a first thin dielectric buffer layer of a first leakage-current-density material with a first moderate-dielectric-constant, a high-dielectric-constant layer of a second leakage-current-density material overlaying the first thin dielectric buffer layer, and a second thin dielectric buffer layer of a third leakage-current-density material with a second moderate-dielectric-constant overlaying the high-dielectric-constant layer, wherein the first and third leakage-current-density materials have substantially lower leakage-current-densities than the second leakage-current-density material. The first and second thin dielectric buffer layers substantially limit the leakage-current-density of the structure, with only modest degradation of the dielectric constant of the structure. A method of forming an embodiment of this invention comprises the steps of forming a first thin dielectric buffer layer of a first leakage-current-density material with a first moderate-dielectric-constant, forming a high-dielectric-constant layer of a second leakage-current-density material on the first thin dielectric buffer layer, and forming a second thin dielectric buffer layer of a third leakage-current-density material with a second moderate-dielectric-constant on the high-dielectric-constant layer, wherein the first and third leakage-current-density materials have substantially lower leakage-current-densities than the second leakage-current-density material.
These are apparently the first thin-film structures wherein a thin dielectric barrier layer of a low leakage-current-density MDC material is used to reduce the leakage current of a thin-film ferroelectric or high-dielectric-constant oxide structure. It is generally desirable to minimize the ratio of the thickness of the low leakage-current-density MDC material to the thickness of the HDC material in order to keep the dielectric constant of the structure within 50% (preferably within 90% and more preferably within 95%) of the dielectric constant of the HDC material when used alone. As used herein, the term “thin”, when used in conjunction with the dielectric barrier layer, means less than {fraction (1/10)} (preferably less than {fraction (1/20)} and more preferably less than {fraction (1/50)}) the thickness of the high-dielectric-constant material. As used herein, the terms “low” and “lower”, when used in reference to leakage-current-density of the dielectric buffer layer, mean substantially smaller (and preferably less than ⅕ and more preferably less than {fraction (1/10)}) than the leakage-current-density of a layer of HDC material with the same thickness, electrodes, etc. The possibly lower dielectric constant of the structure is generally compensated for by the reduced leakage current of the structure. The additional layers generally require only minor modifications of existing processes, since the same processes that are used for the high-dielectric-constant oxide can generally be used for the moderate-dielectric-constant material. These structures may also be used for multilayer capacitors and other thin-film ferroelectric devices such as pyroelectric materials, non-volatile memories, thin-film piezoelectric and thin-film electro-optic oxides.


REFERENCES:
patent: 4437139 (1984-03-01), Howard
patent: 4814289 (1989-03-01), Bauerle
patent: 5122477 (1992-06-01), Wolters et al.
patent: 5206788 (1993-04-01), Larson et al.
patent: 5216572 (1993-06-01), Larson et al.
patent: 5290609 (1994-03-01), Horiike et al.
patent: 4-218207 (1992-08-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electrode interface for high-dielectric-constant materials does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electrode interface for high-dielectric-constant materials, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electrode interface for high-dielectric-constant materials will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2865647

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.