Electrode for lithium secondary battery and lithium...

Chemistry: electrical current producing apparatus – product – and – Current producing cell – elements – subcombinations and... – Electrode

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C429S218100, C429S231100

Reexamination Certificate

active

06746802

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an electrode for a lithium secondary battery and a lithium secondary battery using the electrode.
2. Related Art
The battery performance of lithium secondary batteries recently under intensive research and development, such as charge-discharge voltage, cycle life characteristics or storage characteristics, depends largely upon the types of the electrodes used. This has led to the attempts to better battery performance by improving electrode active materials.
The use of metallic lithium for the negative active material, although possible to construct a battery with high energy density per weight and volume, presents a problem that the lithium deposited on charge grows into dendrite which could cause internal short-circuiting.
Lithium secondary batteries are reported (Solid State Ionics, 113-115, p57 (1998)) which use an electrode consisting of aluminum, silicon, tin or the like that is electrochemically alloyed with lithium on charge.
We have found that among electrodes for a lithium secondary battery using tin as an active material, an electrode comprising a tin thin film deposited on a current collector such as a copper foil by electroplating or the like has a large discharge capacity and relatively good cycle characteristics. In such an electrode having a tin thin film as an active material, cycle properties are believed to be seriously affected by the reaction which is easy to take place between the surface of the thin film and an electrolyte solution.
SUMMARY OF THE INVENTION
It is the object of the present invention to provide an electrode for a lithium secondary battery using a thin film of the active material containing tin as a main component and being capable of suppressing the reaction between an electrolyte solution and the active material.
The present invention provides an electrode for a lithium secondary battery comprising a current collector composed of a metal incapable of alloy formation with lithium, a thin film formed by depositing on the current collector and composed of an active material containing tin as a main component, and a tin oxide layer formed on the surface of the thin film.
In the present invention, due to the presence of the tin oxide layer on the surface of the thin film, the reaction between the electrolyte and the active material can be suppressed and the initial charge-discharge efficiency can be improved. Further, it is supposed that due to the presence of the tin oxide layer on the surface of the thin film, an oxide coating film suitable for improving the charge-discharge cycle characteristics is formed by electrochemical oxidation of the electrolyte during initial charge. It is therefore supposed that such an oxide coating film suppresses the separation of the thin film from the current collector to provide the improvement of the charge-discharge cycle characteristics.
In the present invention, the tin oxide layer preferably has a concentration gradient that the concentration of the tin oxide gradually decreases toward the current collector. Further, the thickness of the tin oxide layer is preferably 10 nm or more.
The concentration gradient may be varied continuously or in step wise. Due to the presence of the concentration gradient, the reaction of the active material in the thin film surface with the electrolyte is more effectively suppressed, and the cracking of the thin film caused by charge and discharge is effectively controlled, thereby to prevent the separation of the thin film.
Further, the content of the oxide layer in the entire thin film is preferably in the range of the amount corresponding to the oxygen content of 0.3% or more by atomic ratio of oxygen element with respect to tin element in the entire thin film. It is also preferably corresponding to the oxygen content of 20% or less. Consequently, it is preferable that the tin oxide layer is formed on the surface of the thin film so that the oxygen content in the thin film is in a range from 0.3 to 20% by atomic ratio of oxygen element with respect to tin element. If the oxygen content is too low, the effect of the present invention to suppress reaction with the electrolyte may not be sufficiently achieved. On the contrary, if the oxygen content is too high, the charge-discharge efficiency may be decreased.
The thin film of the active material in the present invention is a thin film containing tin as a main component, and is not particularly restricted as far as it can store lithium by alloying and release lithium electrochemically. Examples of such a thin film are a tin film composed of substantially tin alone and an alloy thin film containing tin as a main component. The alloy thin film is exemplified by Sn—Pb, Sn—Co, and Sn—In thin films.
The tin oxide layer in the present invention may be any oxide layer containing tin oxide as a main component. For example, in the case the thin film is composed of a tin alloy, the tin oxide layer may contain an oxide of alloying element other than tin.
The thin film in the present invention can be formed by vapor phase or liquid phase deposition. For example, the thin film can be formed by a thin-film forming method such as electrolytic plating, electroless plating, CVD, sputtering, vacuum evaporation, spraying or the like.
The tin oxide layer in the present invention can be formed by various methods. For example, the tin oxide layer can be formed by oxidizing the surface of the thin film. Further, as another method, the tin oxide layer can be formed by depositing the tin oxide layer on the surface of the thin film.
The method for oxidizing the surface of the thin film is exemplified by a method of heat treatment of the thin film in the presence of oxygen. If the tin oxide layer is formed by oxidizing the surface of the thin film, the concentration gradient gradually decreasing the concentration of tin oxide toward the current collector can be easily provided.
In the method for forming the tin oxide layer by heat treatment in the presence of oxygen, the heat treatment temperature is preferably about 50 to 105% of the melting point of tin. Since the melting point of tin is 232° C., it is preferably within a range from 116° C. to 243° C., and taking the reactivity of oxidation into consideration, it is further preferably within a range from 160° C. to 240° C.
Examples of the method for depositing the tin oxide layer are sputtering, vacuum evaporation, MOCVD, composite plating, and the like. After deposition of the thin film, the tin oxide layer is deposited by these methods to form the thin film having the tin oxide layer on the surface thereof.
In the case of forming the tin oxide layer by the sputtering method, for example, the tin oxide layer can be deposited using tin metal as a target and argon gas containing oxygen as the atmospheric gas. In this case, the oxygen concentration can be controlled by the flow rate of oxygen so as to control the concentration of tin oxide in the thickness direction of the thin film. For example, the oxygen gas flow rate is increased along with the deposition of thin film, the tin oxide concentration is decreased gradually toward the current collector. In other words, the concentration gradient with the tin oxide concentration gradually increasing toward the surface can be formed.
After the thin film of the active material is formed by the sputtering method, the tin oxide layer can be successively formed by adding oxygen gas to the atmospheric gas in the sputtering method. Consequently, the formation of the tin oxide layer by the sputtering method is especially useful in the case of forming the thin film by the sputtering method.
Formation of the tin oxide layer by the vacuum evaporation method can be carried out using tin oxide as an evaporation source.
In the case of the MOCVD method, the tin oxide layer can be formed by CVD using an organic metal such as an organic tin compound.
In the case of the composite plating method, the tin oxide layer can be formed by using a plating bath in which fine particles of tin o

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electrode for lithium secondary battery and lithium... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electrode for lithium secondary battery and lithium..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electrode for lithium secondary battery and lithium... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3336223

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.