Surgery – Instruments – Electrical application
Reexamination Certificate
2002-12-19
2004-11-16
Gibson, Roy D. (Department: 3739)
Surgery
Instruments
Electrical application
C128S898000, C606S027000, C606S032000
Reexamination Certificate
active
06818000
ABSTRACT:
FIELD OF THE INVENTION
The invention relates to electrode arrangement for electrothermal treatment of the human or animal body, and in particular to electrocoagulation.
BACKGROUND OF THE INVENTION
The application of high-frequency (HF) alternating currents (specifically in the frequency range of between 300 kHz and 2 MHz) to generate high temperatures for tissue coagulation as a surgical procedure has long been known. In practice monopolar or bipolar electrode arrangements are used for introducing the HF-current into the tissue.
In the case of the monopolar arrangements, an electrode—also referred to as the neutral electrode—is designed in the form of a patient delivery line of large area and fixed to the patient not too far away from the point of intervention and earthed or connected to ground. A second electrode which is manipulated by the operator—also referred to as the active electrode—is connected to the alternating or HF current generator. In terms of its shape, the second electrode is selected to be adapted to the respective use involved, in particular the size of the tissue region to be treated, in such a way that both the operational time and also the thermal loading of the region of the body or organ involved are reasonable.
In the case of arrangements for bipolar HF-surgery, both electrodes are connected to the HF-generator and are of mutually comparable dimensions, and are placed by the operator in the immediate proximity of the intervention location and are generally also both guided actively. Bipolar electrode arrangements are also known in which both coagulation electrodes are arranged on a catheter.
WO 97/17009 discloses a bipolar electrode arrangement with a fluid duct, by way of which flushing fluid can be introduced into the operational area.
WO 96/34569 and the documents referred to in the international search report disclose systems and processes for the ablation of body tissue while maintaining a pre-calculated maximum tissue temperature, in which fluid cooling or thermoelectric cooling is provided during the actual tissue coagulation procedure. Those known arrangements are intended for the introduction into body cavities by way of natural accesses.
SUMMARY OF THE INVENTION
The object of the present invention is to provide an electrode arrangement which permits quick and easy interstitial tissue coagulation.
The present invention includes the basic teaching that the electrode arrangement is mechanically designed in such a way as to facilitate direct penetration into body tissue and at the same time thermal means are provided for setting an advantageous effective temperature profile for the insertion phase.
That notion is based on the fact that the known arrangements which are cooled during the actual electrothermy procedure have admittedly afforded many advantages, but they are not well suited to being inserted into body tissue directly (invasively), with duct formation, for interstitial use. For that reason, in clinical practice, in many cases a duct to the treatment region is firstly opened with a separate incision instrument and in an additional working step on the part of the operator, before the electrothermy applicator is advanced in the duct.
It is further based on the realization on the part of the inventors that a “cold” applicator can be inserted with more difficulty than one which has been warmed somewhat.
A short-term temperature control procedure to a temperature above about 30° C., more especially somewhat above body temperature, has proven to be advantageous for the insertion phase. As soon as the applicator has reached the treatment location and the actual electrothermal treatment is initiated, the procedure involves implementing a transition to adjusting an effective temperature profile which is optimized in regard to optimum coagulation performance. Even in periods of time of that phase, heating in addition to the generation of heat by way of the electrodes can be desirable.
In a particularly effective and at the same time inexpensive embodiment the electrode or electrodes or the electrode carrier are provided with a cavity which is closed off in relation to the body and which is connected to a fluid source which can be the subject of temperature control within a predetermined range so that the suitably temperature-controlled fluid flows through the electrode or the carrier thereof.
Distilled water is preferably used as the fluid, having regard to the low costs involved and the simple and safe handling thereof. In addition for specific situations of use—possibly having regard to specific safety precautions—it is also possible to use other fluids which have proven their worth as heat-transfer agents, as such, for example compressed air, carbon dioxide or silicone oil.
In another possible embodiment the electrode or the electrode carrier has a thermoelectric heating and cooling device which can be for example in the form of a combination of resistance heaters and Peltier elements.
In an embodiment which is simple to produce and handle, the electrode carrier is preferably a tubular, in particular cylindrical element of electrically insulating material, on the peripheral surface of which is or are arranged one or more electrodes and in the interior of which is arranged the temperature control device. To facilitate penetration into the tissue, the electrode carrier desirably has a distal end which decreases or tapers to an approximately conical tip, and the electrodes are fitted substantially flush into the peripheral surface of the carrier.
In the preferred embodiment, in the form of a bipolar arrangement, the assembly includes two electrodes which are mounted to one and the same electrode carrier, in particular in an axial row. In that case, a common temperature control device is provided for both electrodes, such as, for example, the above-mentioned internal tube counterflow temperature control device.
In the preferred embodiment of this alternative configuration, the carrier element is of a cylindrical cross-section, while the two electrodes are of a hollow-cylindrical design and are arranged coaxially with respect to the longitudinal axis of the carrier element. For that purpose the electrodes can be disposed for example in the form of a metallic coating on the surface of the carrier element or each comprise a metal sleeve (for example of titanium or Nitinol) which is pushed onto the carrier element or better inserted flush and forms therewith a press fit.
In a particularly simple embodiment of this arrangement, which is safe and secure in terms of handling, axial fixing of the electrodes is not effected by a continuous carrier element, but by a hollow connecting element which connects the electrodes (which are also hollow) together at their ends. Besides axial fixing of the electrodes, the connecting element also performs the function of insulating the two electrodes relative to each other and it therefore comprises an electrically insulating material, preferably PEEK (polyethyletherketone). The electrodes, the connecting portion and the supply line for the cooling agent (for example a relatively stiff PTFE-hoze which at the same times serves as a handle or gripping portion) are preferably annular or tubular and are of the same cross-section so that the surface of the catheter is a closed cylindrical configuration, whereby insertion into the body is facilitated and at the same time unwanted current density peaks can be substantially avoided.
In an alternative configuration of the preferred bipolar arrangement, which can be used in a particularly variable fashion, but which is more expensive in regard to structure, the axial spacing between the two electrodes is adjustable in order to be able to additionally vary the current density distribution and thus the heating output distribution. If the insulator length between the two electrodes in the axial direction is, for example, less than double the electrode diameter, it is advantageously possible to produce spherical coagulation necroses whereas the shape of the coagulation necroses wit
Desinger Kai
Muller Gerhard
Stein Thomas
Celon AG Medical Instruments
Christie Parker & Hale LLP
Gibson Roy D.
Johnson, III Henry M
LandOfFree
Electrode arrangement for electrothermal treatment of human... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Electrode arrangement for electrothermal treatment of human..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electrode arrangement for electrothermal treatment of human... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3363245