Optical: systems and elements – Optical modulator – Light wave temporal modulation
Reexamination Certificate
2000-12-23
2003-04-08
Dang, Hung Xuan (Department: 2873)
Optical: systems and elements
Optical modulator
Light wave temporal modulation
C359S265000, C359S267000
Reexamination Certificate
active
06545794
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates in general to an electrochromic device having two thin glass elements and a free-standing gel, and more particularly, to a lightweight electrochromic device having a free-standing gel that cooperatively interacts with two thin glass elements to form a thick, strong unitary member which is resistant to flexing, warping, bowing, shattering and/or scattering.
2. Background Art
Heretofore, various automatic rearview mirrors for motor vehicles have been devised which automatically change from the full reflectance (day) mode to the partial reflectance (night) mode(s) for glare protection purposes from light emanating from the headlights of vehicles approaching from the rear. The electrochromic mirrors disclosed in U.S. Pat. No. 4,902,108, entitled “Single-Compartment, Self-Erasing, Solution-Phase Electrochromic Devices Solutions for Use Therein, and Uses Thereof”, issued Feb. 20, 1990, to H. J. Byker; Canadian Patent No. 1,300,945, entitled “Automatic Rearview Mirror System for Automotive Vehicles”, issued May 19, 1992, to J. H. Bechtel et al.; U.S. Pat. No. 5,128,799, entitled “Variable Reflectance Motor Vehicle Mirror”, issued Jul. 7, 1992, to H. J. Byker; U.S. Pat. No. 5,202,787, entitled “Electro-Optic Device”, issued Apr. 13, 1993, to H. J. Byker et al.; U.S. Pat. No. 5,204,778, entitled “Control System For Automatic Rearview Mirrors”, issued Apr. 20, 1993 to J. H. Bechtel; U.S. Pat. No. 5,278,693, entitled “Tinted Solution-Phase Electrochromic Mirrors”, issued Jan. 11, 1994, to D. A. Theiste et al.; U.S. Pat. No. 5,280,380, entitled “UV-Stabilized Compositions and Methods”, issued Jan. 18, 1994, to H. J. Byker; U.S. Pat. No. 5,282,077, entitled “Variable Reflectance Mirror”, issued Jan. 25, 1994, to H. J. Byker; U.S. Pat. No. 5,294,376, entitled “Bipyridinium Salt Solutions”, issued Mar. 15, 1994, to H. J. Byker; U.S. Pat. No. 5,336,448, entitled “Electrochromic Devices with Bipyridinium Salt Solutions”, issued Aug. 9, 1994, to H. J. Byker; U.S. Pat. No. 5,434,407, entitled “Automatic Rearview Mirror Incorporating Light Pipe”, issued Jan. 18, 1995, to F. T. Bauer et al.; U.S. Pat. No. 5,448,397, entitled “Outside Automatic Rearview Mirror for Automotive Vehicles”, issued Sep. 5, 1995, to W. L. Tonar; and U.S. Pat. No. 5,451,822, entitled “Electronic Control System”, issued Sep. 19, 1995, to J. H. Bechtel et al., each of which patents is assigned to the assignee of the present invention and the disclosures of each of which are hereby incorporated herein by reference, are typical of modern day automatic rearview mirrors for motor vehicles. Such electrochromic mirrors may be utilized in a fully integrated inside/outside rearview mirror system or as an inside or an outside rearview mirror system. In general, in automatic rearview mirrors of the types disclosed in the above-referenced U.S. Patents, both the inside and the outside rearview mirrors are comprised of a relatively thin electrochromic medium sandwiched and sealed between two glass elements.
In most cases, when the electrochromic medium which functions as the media of variable transmittance in the mirrors is electrically energized, it darkens and begins to absorb light, and the more light the electrochromic medium absorbs the darker or lower in reflectance the mirror becomes. When the electrical voltage is decreased to zero, the mirror returns to its clear or substantially clear high reflectance state. In general, the electrochromic medium sandwiched and sealed between the two glass elements is comprised of solution-phase, self-erasing system of electrochromic materials, although other electrochromic media may be utilized, including an approach wherein a tungsten oxide electrochromic layer is coated on one electrode with a solution containing a redox active material to provide the counter electrode reaction. When operated automatically, the rearview mirrors of the indicated character generally incorporate light-sensing electronic circuitry which is effective to change the mirrors to the dimmed reflectance modes when glare is detected, the sandwiched electrochromic medium being activated and the mirror being dimmed in proportion to the amount of glare that is detected. As glare subsides, the mirror automatically returns to its normal high reflectance state without any action being required on the part of the driver of the vehicle.
The electrochromic medium is disposed in a sealed chamber defined by a transparent front glass element, a peripheral edge seal, and a rear mirror element having a reflective layer, the electrochromic medium filling the chamber. Conductive layers are provided on the inside of the front and rear glass elements, the conductive layer on the front glass element being transparent while the conductive layer on the rear glass element may be transparent or the conductive layer on the rear glass element may be semi-transparent or opaque and may also have reflective characteristics and function as the reflective layer for the mirror assembly. The conductive layers on both the front glass element and the rear glass element are connected to electronic circuitry which is effective to electrically energize the electrochromic medium to switch the mirror to nighttime, decreased reflectance modes when glare is detected and thereafter allow the mirror to return to the daytime, high reflectance mode when the glare subsides as described in detail in the aforementioned U.S. Patents. For clarity of description of such a structure, the front surface of the front glass element is sometimes referred to as the first surface, and the inside surface of the front glass element is sometimes referred to as the second surface. The inside surface of the rear glass element is sometimes referred to as the third surface, and the back surface of the rear glass element is sometimes referred to as the fourth surface.
Recently, electrochromic mirrors have become common on the outside of vehicles, and suffer from the fact that they are significantly heavier than standard outside mirrors. This increased weight with electrochromic mirrors exerts a strain on the mechanisms used to automatically adjust the position of the outside mirrors. One method of decreasing the weight of an electrochromic mirror is by reducing the thickness of both glass elements or even remove one glass plate. For example, in solid state electrochromic devices, such as those described in U.S. Pat. No 4,973,141 to Baucke et al., where all the components comprise solid state elements, e.g., solid state electrochromic layers (WO
3
and MoO
3
), solid, hydrogen ion-conducting layers, etc., it has been proposed that the back plate is optional. This is possible because the other layers are all in the solid phase and remain attached to the front plate. In electrochromic devices containing at least one solution-phase electrochromic material on the other hand, it is not possible to remove one glass plate because the solvent and electrochromic material would leak out. Therefore, the only option for electrochromic devices containing a solution is to decrease the glass thickness. Unfortunately, as the thickness is decreased the individual glass elements become fragile and flexible and remain that way during and after the manufacture of an electrochromic mirror. This is especially true as the mirrors become larger such as is needed on vehicles like sport-utility vehicles and very large trucks, e.g., tractor-trailers. It is therefore difficult to produce a commercially desirable electrochromic mirror containing at least one solution-phase electrochromic material that has two thin glass elements because each thin glass element will be much more likely to flex, warp, bow and/or shatter. Properties of a solution-phase electrochromic device, such as coloring and clearing times and optical density when colored, are dependent on the thickness of the electrochromic layer (e.g., the spacing between the two glass elements). Maintaining uniform spacing is necessary to maintain uniform appearance. The spacing
Ash Kevin L.
Bauer Frederick T.
Roberts Kathy E.
Theiste David A.
Tonar William L.
Dang Hung Xuan
Gentex Corporation
King & Jovanovic, PLC
Tra Tuyen
LandOfFree
Electrochromic device with two thin glass elements and a... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Electrochromic device with two thin glass elements and a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electrochromic device with two thin glass elements and a... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3012568