Electrochromic device and corresponding uses

Optical: systems and elements – Optical modulator – Light wave temporal modulation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C359S273000

Reexamination Certificate

active

06768574

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to an electrochromic device of the type comprising at least one substrate and a structure of at least partly superimposed layers, where the structure comprises at least one layer of electrochromic material and a layer of electronic insulating transparent ion-conducting solid electrolytic material, as well as to uses of such electrochromic devices.
BACKGROUND OF THE INVENTION
Devices of this type allowing the passage of electromagnetic radiation, particularly the passage of visible light, to be regulated by varying an electric potential difference are known. This variation of the potential difference causes the layer of electrochromic material to vary the transmittance thereof.
One possible use for these devices is in rear-view mirrors for motor vehicles. Under certain circumstances, for example when driving at night, the light reflected by the rear-view mirrors can dazzle the driver. Therefore, various devices have been designed which, based on the electrochromic effect that certain materials have, allow the transmittance of one or more of the layers forming the mirror to be regulated, so as thereby to reduce the amount of reflected light and avoid dazzling.
Various factors are involved in the design of an electrochromic device and, in certain cases, they have opposite effects. A conventional electrochromic device, for example a rear-view mirror, usually comprises a glass substrate on which there are deposited a layer forming a transparent electrode, a layer of electrochromic material, a layer of electrolytic material, a layer of another electrochromic material complementary to the first layer (i.e., which reacts to the electric polarity in the opposite direction to the first layer, in such a way that both layers vary their transmittance in the same direction, usually also called a contraelectrochromic material) and a layer forming a reflective metallic electrode. A second glass substrate usually seals the ensemble. Both the materials and the thicknesses of the layers have a great influence on parameters such as the transmittance of the ensemble, the transmittance variation of the ensemble, the response rate of the ensemble to the application of a particular voltage, etc. Obviously, it is of general interest to have a high maximum transmittance, a lowest possible minimum transmittance, and the fastest possible response rate. In the particular case of the use of electrochromic devices to rear-view mirrors, all these properties are extremely important. Dazzling is caused by a very great difference of light intensity, whereby the transmittance of the electrochromic layers of the rear-view mirror must be greatly varied to counteract this light intensity difference and, also, it must be done at high speed, since otherwise dazzling has already taken place. Nevertheless, all the layers of the device must have a high transmittance so that the mirror will not have a dark appearance during daylight driving.
SUMMARY OF THE INVENTION
It is an object of the invention to overcome these drawbacks. This aim is achieved by an electrochromic device of the type first mentioned above, wherein at least one of said layers is nanostructured, i.e., has a nanostructure.
In general, a nanostructured material is a material which: a) has a structure with a crystalline order of nanometric range (with domains in the range of 2-20 nm); or, b) having crystalline domains of nanometric dimensions (1-20 nm) embedded in an amorphous matrix, of the same or a different compound; or, c) having a structure formed by multiple layers of nanometric thickness (2-100 nm), alternating between two different materials or alternate layers of the same material but with a different structure (for example, combination of amorphous and nanocrystalline), different degree of oxidation and/or different stoichiometry.
This nanostructure has a great influence on various physical properties of the material. Thus, a nanostructured layer has improved conductivity properties relative to a conventional layer. Likewise, a nanostructured layer of electrochromic material has a greater ion storage capacity, as a result of the increase in the number of interfaces and of the structural disorder. The physical and chemical properties related to the new structure (ion transport—entrainment and diffusion—, optical absorption, device switching speed) may be optimized, in accordance with the design of the layer structure and the materials used, to increase the features of the electrochromic device.
All of this allows thinner layers to be made and a faster switching speed to be achieved.
The electrochromic material is preferably a material selected from the group formed by transition metal oxides and combinations of at least two of these. Particularly, the transition metal oxides are, for example, wolfram oxide, molybdenum oxide, vanadium oxide, titanium oxide, chromium oxide, iridium oxide or niobium oxide, among the most common transition metal oxides which may have transitions between different states of oxidation (with valence change), associated or not with changes in the coloring of the oxide (from transparent to colored and vice versa, or always transparent).
The layer of electronic insulating transparent ion-conducting solid electrolytic material is preferably a layer of an electronic insulating material having a resistivity above 10
9
&OHgr;·m (measured as conventional non-nanostructured material) and having a high optical transmittance associated with a low extinction coefficient, k<10-2, in the visible range (400 nm to 800 nm). The extinction coefficient is related to the absorption coefficient by the following formula (1):
&agr;=4
&pgr;k
/&lgr;  (1)
and the transmittance is related to the absorption coefficient by Lambert's law (2):
T
(in units)=
I/I
o
=e
−&agr;d
  (2)
These electrolytic materials are advantageously selected from the group formed by oxides, nitrides, oxinitrides and carbides of silicon, fluorides, oxides and nitrides of semi-metals, and combinations of at least two of the foregoing. Particularly, they are metals of the group formed, for example, by the binary compounds SiO
2
, SiO, SiC, Ta
2
O
5
, Al
2
O
3
, Si
3
N
4
, Y
2
O
3
, MgF
2
, Zr
3
O
2
, the ternary compounds LiAlF
4
, LiNbO
5
and combinations of at least two of any of the foregoing compounds. These materials are those which, among the most common transparent electronic insulating (dielectric) materials, have most appropriate ion transport properties for their application to an electrochromic device.
A preferred embodiment of the invention is obtained when the superimposed layer structure comprises a first layer which is an electrode, being a conductive metal or a transparent conductive oxide, a second layer which is an electrochromic material, a third layer which is an electronic insulating transparent ion-conducting solid electrolytic material, a fourth layer which is also an electrochromic material, with the electrochromic material of the fourth layer being complementary to the electrochromic material of the second layer and a fifth layer which is an electrode, being a conductive metal or a transparent conductive oxide. If one of the layers forming an electrode is a reflective layer, or if an initial or final reflective layer is added to the device, this may, for example, be applied to the manufacture of mirrors, for example, rear-view mirrors for vehicles. Alternative, other articles may be manufactured, such as window glasses for vehicles having a variable transmittance either over the whole glass or in an area thereof. Generally speaking, it is possible to control the electromagnetic energy reflected by said device or transmitted through said device.
Each of the nanostructured layers may be a single layer or may, in turn, be formed by a number of nanolayers (sub-layers of nanometric thickness), which may be made from different materials, or of the same material but applied or deposited under different conditions. In this way, the properties of each of th

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electrochromic device and corresponding uses does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electrochromic device and corresponding uses, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electrochromic device and corresponding uses will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3207768

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.