Electrochemical sensor

Chemistry: electrical and wave energy – Apparatus – Electrolytic

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C204S403010, C204S403150, C204S403140, C204S409000

Reexamination Certificate

active

06660141

ABSTRACT:

The invention relates to electrochemical sensors for determining the presence of a species in a liquid sample.
Sensors are used generally in the field of science to test and monitor the presence or levels of a species in a liquid sample. Liquid samples that may be tested include biological samples such as blood or urine samples, to determine levels of a particular analyte associated with a disease state or water or dissolved soil samples to look for the presence of particular metals or pollutants.
In many cases, samples from the body or from soil or water are taken to a laboratory for testing. In such situations, the sensor apparatus may be of any size and be powered by a mains power source. However, in some cases it is desirable to monitor a sample “in situ”, or immediately after a sample has been taken, reducing the likelihood of a sample degrading before being tested. This is particularly important when testing biological samples or potentially radioactive samples, due to the potential for degradation of the species under test. It is therefore desirable to provide a portable sensor. Furthermore, it is also desirable to provide a hand-held sensor which may readily be used by an unskilled person in a non-laboratory setting such as at home, at a doctor's surgery or clinic. This is especially important when testing biological samples, for example for testing for a biological condition.
According to the present invention there is provided an electrochemical sensor for a liquid sample, the sensor comprising a substrate along which a liquid may travel by capillary action, said substrate being associated with an electrochemical detection arrangement and a power source therefor, wherein the power source comprises at least one pair of electrodes of dissimilar material provided on the substrate and arranged such that liquid travel between the electrodes causes a current to be generated for operating the electrochemical detection arrangement.
The present invention thus provides an electrochemical sensor that has its own integral power source. When liquid is applied to the sensor it will tend to be drawn along the substrate by capillary action and will moisten the previously dry substrate, allowing current to be generated by the power source.
Examples of materials from which the electrodes may be made include carbon, gold, silver, copper, tin, lead, iron and zinc. Most preferred arrangement has alternating copper and zinc electrodes.
In a preferred arrangement according to the present invention the electrodes comprises a plurality of fingers arranged such that the electrodes of one material are interdigitated with those electrodes of another dissimilar material such that current, in the presence of liquid, may flow from one electrode to another.
This preferred arrangement provides a sensor with increased power, in that the more fingers there are the more power is provided to the sensor.
In this arrangement the amount of current generated by the power source is dependent upon the length of travel of the liquid sample along the substrate and the nature and amount of the electrolyte in the sample under test. For example, if the sample is water from a fresh-water lake, the power generated for a particular length of sample travel along the substrate will be low as compared to the power generated by the same length of travel as a sea water sample, with a higher salt content and therefore higher ionic strength. In certain circumstances, when samples of low ionic strength are being tested it is advantageous to pre-apply extra electrolyte to the substrate. This “spiking” of the substrate allows the power source to work even when testing samples containing electrolytes of low ionic strength.
According to a preferred embodiment the sensor comprises a first liquid travel track (the “power track”)provided over at least part of its length with a power source formed of interdigitated electrodes of dissimilar materials, and a second liquid travel track (the “analysis track”) provided at its downstream end with a detection electrode arrangement associated with the electrochemical detection arrangement.
According to one embodiment, the power track is arranged such that sufficient power is generated for the electrochemical detection arrangement when sufficient liquid has travelled along the assay track for the liquid to reach the detection electrodes.
It is preferred that in this arrangement that the two liquid travel tracks are discrete and are separated by a liquid impermeable barrier.
In another preferred arrangement the sensor further comprises a sample application region in fluid communication with the liquid travel track(s). Preferably the sample application region is an absorbent pad.
In order to provide an improved device a third travel track may be provided to acts as a control against which to compare the assay track results to take account of any artefacts in the liquid sample which may affect the level of label detected by the electrochemical detection arrangement.
The electrochemical sensor may further comprise indicator means to display test results. Preferably. the indicator means incorporates an electronic circuit that interprets the output of the electrochemical detection arrangement and provides a specific signal at the indicator means depending upon the test results. Preferably the electronic circuit is a logic circuit. It is also envisaged that an amplifier circuit may also be used.
The signal at the indicator means may be clearly visible or may alternatively be audible. Suitable indicator means include liquid crystals or light emitting diode displays.
The signal generated at the indicator means may show that the test is positive for a species, negative for the species or that the sensor is not yet ready, in that not enough liquid sample has reached the detection electrodes. A preferred indicator means is a “traffic light” signal, whereby a positive test result is indicated by a green signal, a negative test result is indicated by a red signal and an inconclusive test is indicated by an amber or orange signal. Alternatively, the indicator means provides a text message and further means to indicate that the sensor is sufficiently powered.
If an inconclusive result is shown on the indicator means this may be due to either insufficient liquid being applied to the substrate so that not enough power will not be generated at the electrochemical detection arrangement and therefore the sensor will not be able to run, or that although the sensor is working insufficient travel of the sample liquid along the assay track has occurred for the liquid to reach the detection electrodes.
By providing the sensor with additional indicator means can clearly show that sufficient liquid travel along the sensor has occurred to generate power, indicating that the sensor is ready for use. If when the sensor has been shown to be powered an inconclusive result has been obtained further indicator means can inform the user to either apply more liquid sample to the sensor or to wait for a longer time until the liquid can travel along the assay strip to the detection electrodes.
The electrochemical detection arrangement preferably comprises detection electrodes for an amperometric, a potentiometric or a coulometric detector.
An amperometric detector determines the amount of a substance by means of an oxidation-reduction reaction involving that substance. Electrons are transferred as a part of the reaction, so that the electrical current through the detector is related to the amount of the substance seen by the detector.
A potentiometric detector is a chemical detector that measures the concentration of a substance by determining the electrical potential between a specially prepared surface and a solution containing the substance being measured. A coulometric detector detects differences in charge.
Preferably, the electrochemical detection arrangement is printed onto the substrate as a printed circuit board (PCB). Preferably, the detection electrodes are also printed onto the substrate.
The presence of a specie

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electrochemical sensor does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electrochemical sensor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electrochemical sensor will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3124513

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.