Electrochemical method for forming an inorganic covering...

Electrolysis: processes – compositions used therein – and methods – Electrolytic coating – Forming nonmetal coating

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C205S316000, C205S323000, C205S324000

Reexamination Certificate

active

06749738

ABSTRACT:

TECHNICAL FIELD
The present invention relates to an improved electrochemical method for forming an inorganic covering layer, having specified optical, chemical and mechanical characteristics, on a surface of a copper material; the invention further relates to a copper article, made of a copper or copper-based alloy material at least in a surface thereof, comprising an inorganic covering layer having specified optical, chemical and mechanical characteristics.
BACKGROUND ART
It is known that copper or copper-based alloy materials require, in many different applications, to be covered by a layer having specific characteristics. Different applications usually require different features of the covering layer: for example, good electrical insulating properties are essential in wire protection, optical properties (reflectance, gloss, etc.) are vital in solar energy collectors, a particular aesthetic appearance and a particular colour are important in roofing and building construction in general; in any case, the layer should be as adherent as possible to the copper material (in order to avoid a possible detachment during the production process or in use) and have good mechanical characteristics.
A variety of methods has heretofore been proposed for the formation of different kinds of coating layers on copper material surfaces. In particular, chemical conversion or anodizing process are known. In chemical conversion, the copper material to be treated is dipped at a high temperature in an electrolytic bath comprising an alkali salt at a high concentration and an oxidizing agent, in order to form a copper(II) oxide (cupric oxide, CuO) layer: this method requires not only a long process time but also a rather high cost for the reagents and its productivity is therefore poor. In traditional anodizing (i.e. anodic oxidation), a layer composed of copper(II) oxide CuO is formed on a copper material at a high current density in a alkaline solution of a high concentration: since CuO thus formed is instantaneously redissolved even by a slight variation in process conditions (alkali concentration, current density), the process control is extremely difficult.
Improved anodizing processes are disclosed in U.S. Pat. Nos. 5,078,844 and 5,401,382: a tough electrically insulating layer is formed on a copper surface by anodizing at low current density in an acidic electrolytic bath of a hexacyanoiron complex; eventually, such an anodic oxidation process may be preceded by a further anodizing in an alkaline electrolyte bath of a caustic alkali to form a thin film layer of cupric oxide CuO. These methods provide efficient production of insulating composite layers made of copper(I) oxide and copper hexacyanoferrate(I) or (II), but they require relatively long process time and cost and, furthermore, the layers are not suitable for many applications, in particular where specified colour, aesthetic appearance and optical features are required. It is also known from EP-A-751233 a browning method for forming a dark brown covering layer on a copper strip or sheet to be used, for example, in roof covering: the copper material is heat-treated at high temperature (250÷750° C.) in a mixed gas atmosphere containing O
2
to form a cuprous oxide (Cu
2
O) layer conditions or, alternatively, treated with an aqueous alkaline solution to form a cupric oxide (CuO) layer: in both cases the final covering layer consists of a first layer made of Cu
2
O adhering to the base metal and a second layer made of CuO over the first layer. This method requires a high contact time in order to form the composite covering layer and it also has relatively high production costs, basically due to a reduced chemical stability of some oxidants and to higher costs of waste treatment, which are essential in order to avoid water and air pollution.
From GB 1052729 a method is known of anodic oxidation of the surface of a copper sheet in an alkaline aqueous solution, e.g. a solution of NaOH or KOH, under certain process conditions but, always at current densities below 0.5 A, thus resulting only in a predominantly golden-yellow to golden red coating Cu
2
O.
This patent do not provide a method of anodic oxidation to form a continuous homogeneous layer formed of copper (I) oxide (cuprous oxide, Cu
2
O) to obtain different colours by varying specific parameters.
DISCLOSURE OF INVENTION
It is an object of the present invention to provide an improved electrochemical method for forming a covering layer on a copper surface which allows the aforementioned disadvantages connected with the known processes to be eliminated. In particular, it is object of the present invention to provide a fast, simple and inexpensive method which is really effective in providing a copper surface with a coating layer having specified colour, aesthetic appearance and optical properties, improved adherence to the copper substrate and excellent mechanical characteristics by varying the current densities.
According to the present invention, there is provided an electrochemical method for producing an inorganic covering layer on a surface of a copper or copper-based alloy element, characterized in that it comprises an anodic oxidation of said element, in which said surface is placed in an alkaline electrolytic bath of at least an alkali in aqueous solution under controlled process conditions of temperature and current density and for a period of time suitable to form a continuous substantially homogeneous layer on said surface, said layer being basically formed of copper(I) oxide (cuprous oxide, Cu
2
O) having a crystalline structure and a consequent colour determined by said controlled process conditions. In particular, the anodic oxidation is performed in a bath containing only a single alkali salt in aqueous solution, preferably at a concentration of about 1,25÷11,25 mole/l of hydroxyl ion (for example, sodium hydroxide NaOH at a concentration of about 50÷450 g/l or potassium hydroxide KOH at a concentration of about 70÷630 g/l).
Preferably, the anodic oxidation is performed in a bath containing at least 20% wt. sodium hydroxide in aqueous solution, at a temperature of at least 60° C., at a current density of 0,5÷20 A/dm
2
with a cell potential (anode/cathode potential difference) of about 0,2÷3 V and for a period of time of about 5÷120 seconds. More preferably, the anodic oxidation is performed in a bath of 30% wt. NaOH in aqueous solution, at a temperature of about 82°÷92° C. and for a period of time of about 10÷30 seconds, suitable for obtaining a layer having a thickness of about 0,100÷0,400 &mgr;m. The final colour of the layer is determined by varying the current density in said alkaline electrolytic bath in the range 0,3÷20 A/dm
2
: in particular, the anodic oxidation is performed at a current density of about 0,5÷1 A/dm
2
to form a layer having a brown colour, at a current density of about 2,5÷3 A/dm
2
to form a layer having a dark brown colour, at a current density of about 10÷15 A/dm
2
to form a layer having a deep black colour and a velvety surface effect.
The method according to the invention may further comprise, before the anodic oxidation process, a pre-treatment step of the copper surface (for example a chemical or thermal pre-oxidation, a skin passing process, a benzotriazole inhibition, etc.), as well as, after the anodic oxidation, a final surface treatment (for example a further skin-passing step).
According to an embodiment of the invention, the anodic oxidation starts as soon as the copper surface is placed in contact with the electrolytic bath; as an alternative, the anodic oxidation starts a period of time of about 3÷180 seconds after the copper surface is placed in contact with the electrolytic bath.
In case the copper or copper-base alloy element is a plate-like element, both surfaces of said element may be simultaneously subjected to the anodic oxidation according to the invention. Clearly, the method of the invention is absolutely not limited

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electrochemical method for forming an inorganic covering... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electrochemical method for forming an inorganic covering..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electrochemical method for forming an inorganic covering... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3361754

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.