Electro-statically shielded processing module

Data processing: generic control systems or specific application – Specific application – apparatus or process – Electrical power generation or distribution system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C700S022000

Reexamination Certificate

active

06356809

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates generally to electronic packages and more particularly to packages adapted to house processing elements which are part of a distributed control system.
As is known in the art, a highly successive distributed control system is described in U.S. Pat. Nos. 5,706,278, 5,809,220 and 5,796,935 all assigned to the same assignee as the present invention, the entire subject matter of each of such patents being incorporated herein by reference. Such patents describe, a fault tolerant distributed control system for sensing and control across a fault tolerant fiber optic communication media interconnecting a plurality of intelligent nodes. Each intelligent node comprises: a digital communication processor (DCCP) operating autonomously in relation to DCCPs at other nodes; and, a transceiver interfacing with the communication media. The fiber optic communication media comprises bi-directional serial data busses. The combination provides a low cost, highly reliable distributed control system particularly applicable to primary and secondary aircraft control systems, as well as to other vehicle and control systems, for example.
As is also known in the art, the National Transportation and Safety Board (NTSB) and the Federal Aviation Agency (FAA) are becoming increasingly concerned about the amount of energy which can enter today's aircraft fuel tanks; whether as a designed level, or from externally coupled sources (e.g., lightening, surge, short-circuits, etc.). One of the primary reason listed by the NTSB for the TWA Flight 800 explosion is electrical energy coupling in the fuel tank. Recent efforts to reduce this source of fuel explosion have focused on reducing the level of designed energy inside the tank; but, such efforts have faced a difficult task of quantifying and proving that unintended, or sneak, paths do not, and cannot exist. The failure hazards analysis is a long, and complex process.
SUMMARY OF THE INVENTION
In accordance with the invention, a package is provided. The package includes an electro-statically shielded enclosure. A processor is disposed in the enclosure. A communication interface is provided for coupling data between the processor and a processor external to the package with such data passing through the enclosure. A power supply is provided for the processing element disposed in the enclosure. The power supply is adapted to generate power, for the processing element, in response to input energy. An energy interface is provided for coupling the input energy from a source external to the enclosure through a dielectric transmission media passing through the enclosure.
In one embodiment of the invention, the communication interface has a dielectric transmission media, for coupling data through the enclosure between the processor and a processor external to the enclosure, such media passing through the enclosure.
With such an arrangement both data to the electrostatically shielded processor and energy to the electrostatically shielded power supply are coupled to the electrostatically shielded enclosure though dielectric media. Therefore, electrical disturbances external to the enclosure will not be carried by conductive wires into the enclosure.
In one embodiment of the invention, a package is provided having an electrostatically shielded enclosure. A processor is disposed in the enclosure. A communication interface, having a dielectric transmission media, is provided for coupling data through the enclosure between the processor and a processor external to the enclosure, such media passing through the enclosure. A power supply for the processor is disposed in the enclosure, such power supply being adapted to generate power in response to input energy. An energy interface, having a dielectric transmission media, is provided for coupling the input energy from a source external to the enclosure through the dielectric transmission media of the energy interface, such energy interface dielectric transmission media passing through the enclosure.
In accordance with another embodiment of the invention, the communication interface has a fiber optic transmission media for coupling data between the processor and a processor external to the package through the fiber optic transmission media, such fiber optic transmission media passing through the enclosure. The power supply for the processing element disposed in the enclosure comprising a photocell adapted to generate power for the processing element in response to light energy produced outside the enclosure. The energy interface has a fiber optic transmission media for coupling the light energy produced outside the enclosure through the energy interface fiber optic transmission media, such energy interface fiber optic transmission media passing through the enclosure.
In accordance with another embodiment of the invention, a fuel measuring system is provided. The fuel measuring system includes a package adapted for mounting to a fuel storage vessel. The package includes an electrostatically shielded enclosure. A processor element is disposed in the enclosure and is adapted for coupling to a fuel sensor disposed in the storage vessel. A communication interface is provided for coupling data through the enclosure between the processor and a processor external to the package through a dielectric transmission media passing through the enclosure. A power supply for the processor element disposed in the enclosure, such power supply being adapted to generate power for the processing element in response to input energy. An energy interface is provided for coupling the input energy from a source external to the enclosure through dielectric transmission media passing through the enclosure.
With such an arrangement both data to the electrostatically shielded processor and energy to the electrostatically shield power supply are coupled to the electrostatically shielded enclosure though dielectric media. Therefore, electrical disturbances external to the enclosure will not be carried by conductive wires into the enclosure and then into the fuel tank which might thereby ignite the fuel in the tank.
In one embodiment, the power supply comprises a fiber coupled photocell.
In accordance with yet another embodiment of the invention, a fuel monitoring system is provided. The system includes a plurality of fuel measuring systems, each one thereof having a package adapted for mounting to a corresponding one of a plurality of fuel storage vessels. Each one of the packages comprising: (i) an electrostatically shielded enclosure; (ii) a processing element disposed in the enclosure and adapted for coupling to a fuel sensor disposed in the storage vessel coupled thereto; (iii) a communication interface for coupling data through the enclosure between the processing element and a processing element external to the package through a dielectric transmission media passing through the enclosure; (iv) a power supply for the processing element disposed in the enclosure, such power supply being adapted to generate power for the processing element in response to input energy; and, (v) an energy interface for coupling the input energy from a source external to the enclosure through a dielectric transmission media passing through the enclosure. A distributed control system is provided for sensing and controlling the processing elements in the plurality of fuel gauges across a fault tolerant fiber optic communication media interconnecting the processing elements at each one of a plurality of nodes of the system. Each one of such nodes comprises the processing element. The processing element comprising a digital communication processing element adapted to operate autonomously in relation to the other processing elements at the other nodes and a communication interface comprising a transceiver interfacing with the communication media.
In one embodiment of the invention, the fiber optic communication media comprises bi-directional serial data busses.


REFERENCES:
patent: 4918619 (1990-04-01), Orloff et al.
patent: 5470

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electro-statically shielded processing module does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electro-statically shielded processing module, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electro-statically shielded processing module will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2833564

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.