Incremental printing of symbolic information – Ink jet – Fluid or fluid source handling means
Reexamination Certificate
1999-12-29
2001-12-11
Vo, Anh T. N. (Department: 2861)
Incremental printing of symbolic information
Ink jet
Fluid or fluid source handling means
C347S021000, C347S083000, C347S112000
Reexamination Certificate
active
06328436
ABSTRACT:
CROSS-REFERENCE TO RELATED APPLICATIONS
The present invention is related to U.S. patent applications Ser. Nos. 09/163,893, 09/164,124, 09/164,250, 09/163,808, 09/163,765, 09/163,839, 09/163,954, 09/163,924, 09/163,904, 09/163,799, 09/163,664, 09/163,518, 09/164,104, 09/163,825, 08/128,160, 08/670,734, 08/950,300, 08/950,303, and 09/407,908, and issued U.S. patent Ser. No. 5,717,986, each of the above being incorporated herein by reference.
BACKGROUND
The present invention relates generally to the field of marking devices, and more particularly to a device capable of applying a marking material to a substrate by introducing the marking material into a high-velocity propellant stream.
Ink jet is currently a common printing technology. There are a variety of types of ink jet printing, including thermal ink jet (TIJ), piezo-electric ink jet, etc. In general, liquid ink droplets are ejected from an orifice located at a one terminus of a channel. In a TIJ printer, for example, a droplet is ejected by the explosive formation of a vapor bubble within an ink-bearing channel. The vapor bubble is formed by means of a heater, in the form of a resistor, located on one surface of the channel.
We have identified several disadvantages with TIJ (and other ink jet) systems known in the art. For a 300 spot-per-inch (spi) TIJ system, the exit orifice from which an ink droplet is ejected is typically on the order of about 64 &mgr;m in width, with a channel-to-channel spacing (pitch) of about 84 &mgr;m, and for a 600 dpi system width is about 35 &mgr;m and pitch of about 42 &mgr;m. A limit on the size of the exit orifice is imposed by the viscosity of the fluid ink used by these systems. It is possible to lower the viscosity of the ink by diluting it in increasing amounts of liquid (e.g., water) with an aim to reducing the exit orifice width. However, the increased liquid content of the ink results in increased wicking, paper wrinkle, and slower drying time of the ejected ink droplet, which negatively affects resolution, image quality (e.g., minimum spot size, inter-color mixing, spot shape), etc. The effect of this orifice width limitation is to limit resolution of TIJ printing, for example to well below 900 spi, because spot size is a function of the width of the exit orifice, and resolution is a function of spot size.
Another disadvantage of known ink jet technologies is the difficulty of producing greyscale printing. That is, it is very difficult for an ink jet system to produce varying size spots on a printed substrate. If one lowers the propulsive force (heat in a TIJ system) so as to eject less ink in an attempt to produce a smaller dot, or likewise increases the propulsive force to eject more ink and thereby to produce a larger dot, the trajectory of the ejected droplet is affected. This in turn renders precise dot placement difficult or impossible, and not only makes monochrome greyscale printing problematic, it makes multiple color greyscale ink jet printing impracticable. In addition, preferred greyscale printing is obtained not by varying the dot size, as is the case for TIJ, but by varying the dot density while keeping a constant dot size.
Still another disadvantage of common ink jet systems is rate of marking obtained. Approximately 80% of the time required to print a spot is taken by waiting for the ink jet channel to refill with ink by capillary action. To a certain degree, a more dilute ink flows faster, but raises the problem of wicking, substrate wrinkle, drying time, etc. discussed above.
One problem common to ejection printing systems is that the channels may become clogged. Systems such as TIJ which employ aqueous ink colorants are often sensitive to this problem, and routinely employ non-printing cycles for channel cleaning during operation. This is required since ink typically sits in an ejector waiting to be ejected during operation, and while sifting may begin to dry and lead to clogging.
Other technologies which may be relevant as background to the present invention include electrostatic grids, electrostatic ejection (so-called tone jet), acoustic ink printing, and certain aerosol and atomizing systems such as dye sublimation.
SUMMARY
The present invention is employed in a novel system for applying a marking material to a substrate, directly or indirectly, which overcomes the disadvantages referred to above, as well as others discussed further herein. Ballistic aerosol marking apparatus and processes have been described in the aforementioned and incorporated U.S. patent applications, such as Ser. No. 09/163,893. In such an apparatus, a propellant is caused to flow through a channel, and marking material is selectively delivered to the channel whereby it is imparted with sufficient kinetic energy by the propellant stream to impact a substrate. A relatively large number of such channels may be employed to form a print head. Also, a multiplicity of marking materials may be delivered to the channels concurrently, whereby they are mixed in said channels prior to impacting the substrate. Single-pass color printing is one possible benefit obtained from this architecture.
In particular, however, the present invention relates to methods and apparatus for generating and supplying particulates to the channel for a ballistic aerosol marking print head. The particles are generated in an aerosol form above a bed of particulates, excited by gas flow and sonic or ultrasonic vibration, or by mechanical/gas excitation with a rotating mechanical arm, such as a propeller. Additionally particles can be supplied in a liquid form (loosely packed, readily flowing) to the channels by a sonic/ultrasonic vibration and gas flow.
The propellant is usually a dry gas which may continuously flow through the channel while the marking apparatus is in an operative configuration (i.e., in a power-on or similar state ready to mark). The system is referred to as “ballistic aerosol marking” in the sense that marking is achieved by in essence launching a non-colloidal, solid or semi-solid particulate, or alternatively a liquid, marking material at a substrate. The shape of the channel may result in a collimated (or focused) flight of the propellant and marking material onto the substrate.
In our system, the propellant may be introduced at a propellant port into the channel to form a propellant stream. A marking material may then be introduced into the propellant stream from one or more marking material inlet ports. The propellant may enter the channel at a high velocity. Alternatively, the propellant may be introduced into the channel at a high pressure, and the channel may include a constriction (e.g., de Laval or similar converging/diverging type nozzle) for converting the high pressure of the propellant to high velocity. In such a case, the propellant is introduced at a port located at a proximal end of the channel (defined as the converging region), and the marking material ports are provided near the distal end of the channel (at or further down-stream of a region defined as the diverging region), allowing for introduction of marking material into the propellant stream.
In the case where multiple ports are provided, each port may provide for a different color (e.g., cyan, magenta, yellow, and black), pre-marking treatment material (such as a marking material adherent), post-marking treatment material (such as a substrate surface finish material, e.g., matte or gloss coating, etc.), marking material not otherwise visible to the unaided eye (e.g., magnetic particle-bearing material, ultra violet-fluorescent material, etc.) or other marking material to be applied to the substrate. The marking material is imparted with kinetic energy from the propellant stream, and ejected from the channel at an exit orifice located at the distal end of the channel in a direction toward a substrate.
One or more such channels may be provided in a structure which, in one embodiment, is referred to herein as a print head. The width of the exit (or ejection) orifice of a channel is generally on the order of 250 &mgr;m or smaller,
Anderson Gregory B.
Biegelsen David K.
Endicott Frederick J.
Floyd Philip D.
Kazmaier Peter M.
Vo Anh T. N.
Xerox Corporation
LandOfFree
Electro-static particulate source, circulation, and valving... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Electro-static particulate source, circulation, and valving..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electro-static particulate source, circulation, and valving... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2569129