Optical waveguides – With optical coupler – Particular coupling function
Reexamination Certificate
2001-06-08
2004-07-06
Healy, Brian (Department: 2874)
Optical waveguides
With optical coupler
Particular coupling function
C385S015000, C385S039000, C385S040000, C385S048000, C398S052000, C398S053000
Reexamination Certificate
active
06760512
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to optical systems using pulsed optical signals. More specifically, the present invention relates to generation and delay of optical pulse streams.
BACKGROUND OF THE INVENTION
Optical beam control is often required where information from an optical beam must be relayed from one location to another. High-bandwidth, secure laser communication (e.g. pulse-burst encoding, pulse position modulation, etc.), infrared countermeasures (IRCM), target designation, bio/chem beam steering and laser radar are a few of the applications in which optical beam control is required. Optical beam control of pulsed optical beams requires that the control device provide time-coincident generation of the desired pulse format across the entire aperture of the control device.
Devices for steering optical beams are well known in the art. Optical beam steering can be implemented with electro-mechanical systems. Such systems generally consist of a mirror mounted on an electrical actuator. These systems provide relatively low losses for the strength of the reflected beam. However, such electro-mechanical systems are limited to low response frequencies up to the order of 1 KHz. The moving parts of an electro-mechanical system along with size and weight factors are considered to be major limitations of such a system.
Smaller and lighter optical beam steerers are provided by compact arrays of non-mechanical beam deflectors, such as optical MEMS mirrors (O-MEMS) or liquid crystal arrays. The optical signal provided to these devices is generally split into multiple optical signals. The arrays then actually consist of multiple optical radiators which act to steer and radiate multiple optical signals in a desired direction. However, since the radiators are generally deployed in a relatively flat plane, the output beams do not arrive at a receive point at the same time. This problem is particularly seen when the optical signal comprises pulsed signals. In this case, the optical pulse received from the radiating element furthest from the receive point will lag the pulse received from the closest radiating element. This problem is further exacerbated when the pulse widths (or the time slots for encoding) are shorter than the photon transit time across the radiating aperture. Performance of the optical transmitting system is improved when the individual optical beams are made time-coincident to create a time-coincident optical beam.
Applying a time delay to each optical beam before it is radiated provides the capability to generate a time-coincident optical beam. Controlling the delay of signals from individual transmitting elements is actually the principle behind a beamsteered phased array antenna system. Phased array antenna systems employ a plurality of individual antenna elements that are separately excited to cumulatively produce a transmitted electromagnetic wave that is highly directional. In a phased array, the relative phases of the signals provided to the individual elements of the array are controlled to produce an equiphase beam front in the desired pointing direction of the antenna beam. The premise of a true-time delay beamsteered phased array is to steer the array beam by introducing known time delays into the signals transmitted by the individual antenna elements. Accurate beam steering of a pulsed optical beam from individual optical elements similarly requires introducing time delays into the optical signals from individual optical elements to produce an equiphase optical beam front.
Optical control systems for producing selected time delays in signals for phased array antennas are well known in the art. Different types of optical architectures have been proposed to process optical signals to generate selected delays, such as routing the optical signals through optical fiber segments of different lengths; using deformable mirrors to physically change the distance light travels along a reflected path before transmission; and utilizing free space propagation based delay lines, which architecture typically incorporates polarizing beam splitters and prisms. These techniques can also be used for optical beam steering, with various levels of success.
The use of optical fiber segments to introduce delays requires the use of many optical switches and the splicing together of numerous segments of fiber. The costs of construction of such a device are substantial, given the significant amount of design work and precision assembly work required to produce a device having the range and incremental steps of time delays necessary to provide the desired steering. The numerous switching and coupling elements also introduce very high optical losses in the beamforming circuitry, requiring significant optical power.
The deformable mirror system relies on the physical displacement of a mirror to provide the necessary time delay; an array of moveable mirrors allows the generation of a range of delayed optical signals. This type of system introduces additional complexity into an optical beam steering system due to the tight tolerances and small time delays required for optical signals.
An optical architecture for time delay beamforming using free space elements is disclosed by Riza in U.S. Pat. No. 5,117,239, “Reversible Time Delay Beamforming Optical Architecture for Phased-Array Antenna,” dated May 26, 1992. In Riza, input optical beams are directed through a plurality of free space delay devices which selectively delay the beams. The delay imparted to an individual beam is selected by a plurality of spatial light modulators coupled with polarizing beam splitters which will either pass a light beam or direct the light beam into a delay device. This architecture also requires a large number of individual delay devices, which increases the complexity and cost of the system.
An optical true-time delay bulk structure is disclosed by Zhenhai Fu and Ray T. Chen in “Five-bit substrate guided wave true-time delay module working up to 2.4 THz with a packing density of 2.5 lines/cm
2
for phased array antenna applications,” Optical Engineering, Vol. 37, No. 6, June 1998, pp. 1838-1844. The bulk substrate disclosed by Fu and Chen comprises a passive waveguide that takes as an input an optical pulse and generates a sequence of output pulses with fixed delays. In this prior art, the passive substrate is used to provide delays to an optical signal and a photonic switching network is used to select a given set of taps. Holographic gratings are used to provide the output taps along the delay line. To assure that each tap has the same optical output power, the diffraction efficiency of the gratings is designed to increase along the delay line, as the successive taps couple the light out. Since the waveguide is passive, i.e., no external control is used to modify the delay provided by the waveguide, and, further, the tapped output locations are fixed, the output sequence of optical pulses is fixed in a temporal sense and cannot be changed. The device disclosed by Fu and Chen is directed to optically controlling an RF pulse-forming network with a fixed set of time delays.
Thus, it would be desirable to provide a mechanism for producing variable true time delay in an optical signal without requiring active switching and without high insertion loss. This mechanism would then allow for precision optical beam steering. In addition, it would be desirable to provide such a true time delay which is relatively simple, compact, and inexpensive.
SUMMARY OF THE INVENTION
It is therefore an object of the present invention to provide a device and method for providing true-time delayed optical signals without requiring active switching or incurring high insertion loss, such that the device and method can provide multiple delayed optical signals for input to an optical beam steering array.
It is a further object of the present invention to provide the desired delayed optical signals in a relatively simple, compact, and low cost manner.
Pursuant to the present invention, a method and apparatus is pro
Healy Brian
HRL Laboratories LLC
Ladas & Parry
Petkovsek Daniel
LandOfFree
Electro-optical programmable true-time delay generator does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Electro-optical programmable true-time delay generator, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electro-optical programmable true-time delay generator will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3192086