Electro-optical device, inspection method thereof, and...

Liquid crystal cells – elements and systems – Nominal manufacturing methods or post manufacturing... – Defect correction or compensation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06816228

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Technical Field of the Invention
The present invention relates to an electro-optical device, an inspection method for the same, and electronic equipment.
2. Description of the Related Art
As is well known, liquid crystal apparatuses are extensively used as the display units in a variety of electronic equipment, such as cellular telephones. Such a liquid crystal apparatus has a pair of substrates attached to each other through the intermediary of a sealing member, liquid crystal supported between the two substrates, and a plurality of electrodes for applying a voltage to the liquid crystal. More specifically, in a typical configuration, a drive signal output from a driver IC mounted on a substrate or a flexible substrate or the like is supplied to each electrode via wires formed on the substrate.
In a process for manufacturing such a liquid crystal apparatus, a so-called lighting inspection is generally performed. In the lighting inspection, it is determined whether all pixels normally light. To perform the lighting inspection, first, a plurality of inspection terminals provided on an inspection apparatus are brought into contact with the wires formed on a substrate. Then, predetermined drive signals are supplied from the inspection terminals to a plurality of electrodes via the wires. And an image displayed as a result is observed visually or by a CCD (Charge Coupled Device) camera so as to determine whether all pixels normally light.
However, in the case that the intervals among the wires formed on the substrate are small, it is extremely difficult to accurately bring respective inspection terminals into contact with desired wires. More specifically, in the case that the interval between adjoining wires is small, it is difficult to have one inspection terminal in contact only with a single wire. This results in undesirable contact of the inspection terminal with two adjoining wires, thereby preventing accurate inspection from being accomplished.
Furthermore, increasing the number of electrodes to achieve a higher display definition automatically requires more wires. In this case, it is necessary to reduce an interval between adjoining wires on a substrate. Accordingly, the problem described above becomes more marked. When COG (Chip On Glass) technology is used to mount a driver IC on a substrate, the wires on a projecting region must be concentrated in a region where the driver IC is to be mounted, and the intervals among the wires are reduced in the vicinity of the region. Hence, the problem described above exists in this case also. These problems will arise also in another electro-optical device, such as an EL apparatus employing an EL (Electro-Luminescence) layer as its electro-optical material.
The present invention has been made in view of the situations described above, and it is a feature of the present invention to provide an inspection method for an electro-optical device that permits accurate inspection even in the case that intervals among wires formed on a substrate are small, an electro-optical device for which the inspection method is used, and electronic equipment employing the electro-optical device.
SUMMARY OF THE INVENTION
To solve the problems described above, an electro-optical device in accordance with the present invention is equipped with a substrate holding an electro-optical material, and a plurality of wires that have routing wire portions formed in a region other than a region opposing the electro-optical material in the substrate, wherein a routing wire portion of each of the wires has a first portion and a second portion that has a width smaller than that of the first portion. In other words, the routing wire portion of each of the wires has the first portion and the second portion, and the intervals between adjoining routing wire portions at the second portions are larger than the intervals at the first portions.
Generally, in the inspection process for an electro-optical device, it is necessary to have inspection terminals in contact with wires exposed on a substrate (i.e., the routing wire portions). However, if the intervals among the wires are extremely small, there may be an inconvenience, for example, in that one inspection terminal undesirably comes in contact with two wires, making it difficult to accomplish accurate inspection. According to the electro-optical device in accordance with the present invention, the width of the second portion in the routing wire portion is smaller than the width of the first portion. In other words, the interval between adjoining wires at the second portions is larger than the interval at the first portions. Hence, by bringing the inspection terminal into contact with the second portion, it will be possible to avoid a situation that the inspection terminal contacts another wire even in the case that the inspection terminal to be in contact only with one of the wires is slightly shifted. Therefore, according to the present invention, even in the case that the intervals among the wires formed on the substrate (to be more accurate, the intervals at the first portions) are extremely small, the inspection using the inspection terminals can be accurately performed.
To implement such an action, it is alternatively conceivable, for example, to reduce the width of the entire routing wire portion. However, this configuration would cause a problem of an increased wire resistance or a problem in that the wires are easily broken. According to the present invention, the width of only a part (the second portion) of the routing wire portion is reduced, thus reducing the occurrence of the above problems.
The electro-optical device described above is preferably provided with a driver IC that is mounted in a region other than a region opposing the electro-optical material in the substrate and that supplies output signals to the wires. Thus, in the case that the driver IC is mounted on a substrate by using the COG technology, many wires must be concentrated in the region where the driver IC is mounted, thereby making it necessary to reduce the intervals among the wires. Therefore, a particularly marked advantage can be obtained by applying the present invention, which realizes accurate inspection even when the intervals among wires are small, to an electro-optical device with a driver IC mounted on a substrate thereof.
Also desirable is a configuration in which pixels constructed by a plurality of sub-pixels respectively corresponding to different colors and color filters of the colors corresponding to the respective sub-pixels are provided. In an electro-optical device that enables full-color display, a plurality of sub-pixels corresponding to different colors make up one pixel. Hence, the electro-optical device that enables full-color display has more wires than a monochromic display electro-optical device that has the same number of pixels, so that the intervals among the wires need to be reduced. However, the present invention enables accurate inspection even in the case that the intervals among the wires are small as mentioned above.
In an electro-optical device equipped with a plurality of first electrodes and a plurality of second electrodes that are located on the other side of the first electrodes, sandwiching the electro-optical material therebetween and that extend in a direction for intersecting with the first electrodes, the wires may connect to either the first electrodes or the second electrodes, whichever have more electrodes. In other words, usually, wires connecting to many electrodes make it difficult to accomplish accurate inspection because of their small intervals. However, providing the wires with the first portions and the second portions allows accurate inspection to be implemented.
In the electro-optical device according to the present invention, preferably, the wire has a first layer and a second layer that has a resistance value lower than that of the first layer, and the second layer is formed to correspond at least to the second portion in the wire. In the case that

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electro-optical device, inspection method thereof, and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electro-optical device, inspection method thereof, and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electro-optical device, inspection method thereof, and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3344991

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.