Liquid crystal cells – elements and systems – Particular structure – Having significant detail of cell structure only
Reexamination Certificate
2000-10-04
2004-02-17
Ngo, Julie (Department: 2871)
Liquid crystal cells, elements and systems
Particular structure
Having significant detail of cell structure only
C349S130000, C349S113000, C349S177000
Reexamination Certificate
active
06693696
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to an electro-optical device using a nematic liquid crystal which shows high responsiveness and high contrast.
BACKGROUND OF THE INVENTION
Conventionally, twisted-nematic liquid-crystal electro-optical devices have been used as display devices for watches, electronic calculators, and so on. The structure of such a twisted-nematic liquid-crystal electro-optical device is now described briefly by referring to
FIG. 5. A
nematic liquid crystal whose dielectric constant has positive anisotropy is injected between two substrates
51
and
52
which are oriented at 90° with respect to each other. Thus, liquid-crystal molecules
53
are twisted. When an electric field is applied to this liquid-crystal, interaction of the field with the anisotropy of the dielectric constant orientates the long axes of the liquid-crystal molecules at right angles to the substrates. The twisted condition of the liquid-crystal molecules when no voltage is applied to the liquid crystal is discriminated from the condition in which the voltage is applied, by the use of a pair of polarizer plates
54
. Alternatively, a nematic liquid crystal whose dielectric constant has negative anisotropy is provided between a pair of substrates which have been subjected to a vertical orientation treatment.
In recent years, great progress has been made in the research on ferroelectric liquid crystals. An optical device using a ferroelectric liquid crystal is fabricated by orienting the molecules in two substrates, bonding together these substrates with a spacing of about 2 &mgr;m that is considerably narrower than the spacing in a twisted-nematic liquid crystal, and injecting a liquid crystal between the substrates. When no electric field is applied, the ferroelectric liquid-crystal molecules have two stable states. When an electric field is applied, the molecules are oriented and settle in one state. When an electric field of a reverse sense is applied, the molecules are oriented and settle in the other state. Both dark and bright conditions are produced by discriminating these two states of the liquid crystal through the use or a polarizer plate.
The response time of an optical device using this ferroelectric liquid crystal is very short, or approximately tens of microseconds, and optical devices of this kind have been expected to find wide application. Also, active-matrix types in which switching elements such as TFTs or MIMs are arranged at pixels are available. Furthermore, supertwisted-nematic liquid crystals in which a nematic liquid crystal is twisted at 180-270° are obtainable.
However, the response times of the aforementioned twisted-nematic electro-optical devices are very long, or tens of milliseconds. Also, the steepness of the response to the applied voltage is poor. Therefore, their application is limited except for display devices having small areas such as watches and electronic calculators. In order to improve the response time, a decrease in the spacing between the substrates may be contemplated. If the spacing is narrowed, the time taken to bring the liquid crystal from ON state to OFF state (hereinafter referred to as the rise time) is shortened but the time taken to bring the liquid crystal from OFF state to ON state (hereinafter referred to as the fall time) is not shortened. In addition, it is difficult to induce a 90°-twist in the liquid-crystal molecules between the two substrates.
Although the response may be enhanced by increasing the driving voltage, an appropriate range of voltages for driving the liquid crystal is determined by the used liquid crystal. Therefore, it is not easy to increase the voltage.
Indeed electro-optical devices using ferroelectric liquid crystals show short response times, but numerous problems exist. First, it is very difficult to control the orientation of the liquid crystal. To control the orientation, rubbing, oblique deposition of silicon oxide, a method using a magnetic field, a temperature gradient method, and other methods have been heretofore employed. At present, however, it is impossible to obtain a uniform orientation by any of these methods. Consequently, high contrast cannot be derived.
Secondly, what can be used as a ferroelectric liquid crystal is a liquid crystal showing smectic phase. Accordingly, the ferroelectric liquid crystal has a layer structure intrinsic in the smectic liquid crystal. Once this layer structure is destroyed by an external force, the original state cannot be regained even if the external force is removed. To regain the original state, it is necessary to heat the liquid crystal, for transforming it into an isotropic phase. In this way, the ferroelectric liquid crystal is not practical because its layer structure is destroyed by a very weak external impact.
Thirdly, in a ferroelectric liquid crystal, electric charge is accumulated at the interface with an orienting film because of spontaneous polarization of the liquid crystal itself, thus developing an electric field opposite in sense to the polarization of the liquid crystal. Therefore, if the same image is kept displayed for a long time, this image will linger after it is attempted to display the next image.
Fourthly, the contrast ratio of an electro-optical device using a ferroelectric liquid crystal depends much on the tilt angle (cone angle) of the liquid crystal. It is known that the tilt angle (cone angle) providing the greatest contrast ratio is 22.5° (45°). Although liquid crystals satisfying only the above requirement, i.e., the tilt angle (cone angle) is 22.5° (45°), have been already synthesized, ferroelectric liquid crystals which can also meet other important conditions, e.g., a temperature range in which the liquid crystal shows ferroelectricity and the response to AC pulses, have not been yet developed. Therefore, at present, greater emphasis is placed on the above-described temperature range than the tilt angle. For these reasons, the contrast ratios of electro-optical devices using ferroelectric liquid crystals, which are yet presently in an experimental stage, are not very high. Today it is very difficult to use a ferroelectric liquid crystal as a display device because of the problems described above.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a liquid-crystal electro-optical device free of the foregoing problems.
This object is achieved by a liquid-crystal electro-optical device comprising a pair of substrates, a nematic liquid crystal having a positive dielectric anisotropy and interposed between the substrates, and liquid crystal-orienting layers (orientation films) formed on the substrates, respectively. These orienting layers are rubbed in antiparallel directions to each other. This device is characterized in that a molecule of the liquid crystal has a pretilt angle of 4° or less.
An example of such a device is illustrated in FIG.
1
. Reference numeral
54
designates a pair of polarizing plates, and
51
and
52
designate a pair of substrates. The nematic liquid crystal molecule
53
is provided in an electro-optical modulating layer provided between the substrates
51
and
52
. Further included are electrode layers
55
and orientation films
56
.
The above object is also achieved by a liquid-crystal electro-optical device comprising a pair of substrates, a nematic liquid crystal having a positive dielectric anisotropy and interposed between the substrates, and liquid crystal-orienting layers formed on the substrates, respectively. These orienting layers are rubbed in antiparallel directions to each other. This device is characterized in that the polar term (polar component) of the surface tension at the liquid crystal-orienting layers is 10 dynes/cm or more.
The above object is also achieved by a liquid-crystal electro-optical device comprising a pair of substrates, a nematic liquid crystal having a positive dielectric anisotropy and interposed between the substrates, and liquid crystal-orienting layers formed on the substrates, respectively. These orienting layers
Ngo Julie
Robinson Eric J.
Robinson Intellectual Property Law Office P.C.
Semiconductor Energy Laboratory Co,. Ltd.
LandOfFree
Electro-optical device does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Electro-optical device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electro-optical device will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3351143