Electro-optic device, manufacturing method therefor, and...

Liquid crystal cells – elements and systems – Particular structure – Having significant detail of cell structure only

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C349S109000

Reexamination Certificate

active

06757037

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Technical Field of the Invention
The present invention relates to an electro-optic device, for example, a liquid crystal display device and an EL device, to a manufacturing method for the electro-optic device, and to electronic equipment using the electro-optic device.
2. Description of the Related Art
The liquid crystal display device, which is an example of the electro-optic devices, generally has a configuration in which a pair of substrates made of a glass substrate, etc., are adhered to each other with a seal member therebetween, and a liquid crystal is encapsulated between the both substrates. Furthermore, a liquid crystal display device including color filters matching a plurality of colors, for example, R (red base), G (green base), and B (blue base), and a reflection layer placed on the side opposite to the observation side with respect to the liquid crystal has been known. In the reflective liquid crystal display device of this kind, external light, for example, sunlight and room illumination light, incident from a substrate on the observation side is reflected at the surface of the reflection layer, and is emitted to the observation side after passing through the color filter. This emission light is visually identified by an observer as a color image.
However, the sensitivity of the human eye (that is, spectral luminous efficacy) varies depending on each wavelength within the visible-light region. More specifically, the human eye has a characteristic that the sensitivity is high with respect to the light having a wavelength on the order of 550 nm corresponding to green-based light, but on the other hand, the sensitivity is low with respect to the light having other wavelengths. Therefore, there has been a problem in that the observer has felt unevenness in the color balance in such a manner, for example, even when the light having been passed through a color filter of each color of blue-based, red-based, and green-based, and having been emitted to the observation side has had the same quantity of light, the blue base and the red base has appeared dark compared to the green base. This problem is a problem that may also occur in a so-called semitransparent reflective liquid crystal display device capable of transmissive display in addition to reflective display.
The present invention has been made in consideration of the aforementioned circumstances. Accordingly, the object of the present invention is to provide an electro-optic device, in which the intensity of the light detected by an observer can be adjusted with respect to each wavelength within the visible-light region, a manufacturing method therefor, and electronic equipment.
SUMMARY OF THE INVENTION
In order to achieve the aforementioned objects, an electro-optic device according to the present invention includes a plurality of color filters, each having a different color, and a reflection layer in which the surface shape of the region facing at least one of the aforementioned color filters and the surface shapes of the regions facing the other aforementioned color filters are different.
According to this electro-optic device, by differentiating the surface shapes of the regions facing the color filters of respective colors in the reflection layer, the mode of reflection in each region, for example, the degree of scattering on the reflection layer surface, etc., can be changed arbitrarily. Therefore, the color balance of display visually identified by the observer can be arbitrarily selected by adjusting the quantity of light visually identified by the observer with respect to each wavelength corresponding to the color of the color filter.
(2) In the electro-optic device having the aforementioned configuration, the mirror reflectivity of the aforementioned region facing the aforementioned at least one of the aforementioned color filters can be differentiated from the mirror reflectivities of the aforementioned regions facing the other aforementioned color filters.
According to this, regarding the region having a high mirror reflectivity in the reflection layer, since scattering on the surface thereof can be suppressed and the quantity of light mirror-reflected can be increased, well-lighted display can be realized with respect to the color of the color filter facing the aforementioned region. On the other hand, regarding the region having a low mirror reflectivity, since scattering on the surface thereof can be accelerated and the quantity of light mirror-reflected can be reduced, brightness of display can be reduced with respect to the color of the color filter facing the aforementioned region.
(3) In the electro-optic device having the aforementioned configuration, a plurality of crest portions and a plurality of trough portions can be formed on the surface of the aforementioned reflection layer, in which the shapes thereof in the aforementioned region facing the aforementioned at least one of the aforementioned color filters are different from the shapes thereof in the aforementioned regions facing the other aforementioned color filters.
According to this configuration, the scattering characteristic on each region in the reflection layer can be differentiated without being attended with complication of the configuration. Therefore, the quantity of light visually identified by the observer can be adjusted in accordance with a wavelength corresponding to the color of each color filter.
(4) In the electro-optic device having the aforementioned configuration, the average value of the pitches defined as the distance between the top of one of the crest portions and the top of other crest portion adjacent to the crest portion in the region facing the aforementioned at least one of the aforementioned color filters can be differentiated from those in the aforementioned regions facing the other aforementioned color filters.
In this case, regarding the region having a large average value of the pitches, since scattering on the surface thereof can be suppressed and the quantity of light emitted to the observer side can be increased, well-lighted display can be achieved with respect to the color corresponding to the aforementioned region. Conversely, regarding the region having a small average value of the pitches, since scattering on the surface thereof is accelerated and the quantity of light visually identified by the observer is reduced, intensity can be reduced with respect to the color corresponding to the aforementioned region.
(5) In the electro-optic device having the aforementioned configuration, the aforementioned depths of the trough portions can be made substantially the same in the regions facing the aforementioned plurality of color filters in the aforementioned reflection layer.
(6) In the electro-optic device having the aforementioned configuration, the aforementioned average value of the depths of the trough portions in the aforementioned region facing the at least one of the aforementioned color filters can be differentiated from those in the aforementioned regions facing the other aforementioned color filters.
In this case, regarding the region having a small average value of the depths of the trough portions, since scattering on the surface thereof can be suppressed and the quantity of light emitted to the observer side can be increased, well-lighted display can be achieved with respect to the color corresponding to the aforementioned region. Conversely, regarding the region having a large average value of the depths of the trough portions, since scattering on the surface thereof is accelerated and the quantity of light visually identified by the observer is reduced, intensity can be reduced with respect to the color corresponding to the aforementioned region.
(7) In the electro-optic device having the aforementioned configuration, in which the average values of the depths of the trough portions are made to differentiate with respect to each region facing the color filter, the pitches defined as the distance between the top of one of the aforementioned crest portions

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electro-optic device, manufacturing method therefor, and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electro-optic device, manufacturing method therefor, and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electro-optic device, manufacturing method therefor, and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3349087

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.