Electro-optic device incorporating a discrete photovoltaic...

Optical: systems and elements – Optical modulator – Light wave temporal modulation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C156S107000

Reexamination Certificate

active

06433913

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to electro-optic devices and, more particularly, to electro-optic devices having enclosed therein at least one photovoltaic device.
Heretofore, devices of reversibly variable transmittance to electromagnetic radiation have been proposed for such applications as the variable transmittance element in variable transmittance light-filters, variable transmittance eyeglasses, variable reflectance mirrors; and display devices which employ such light-filters or mirrors in conveying information. These variable transmittance light filters have included windows. Among such devices are those where the transmittance is varied by thermochromic, photochromic, or electro-optic (e.g., liquid crystal, dipolar suspension, electrophoretic, electrochromic, etc.) means and where the variable transmittance characteristic affects electromagnetic radiation that is at least partly in the visible spectrum (wavelengths from about 3800 Å to about 7600 Å). Typically, proposed control schemes for variable transmittance windows either allow the windows to be power controlled window-by-window with a person determining when the window should darken or have all windows controlled by a central computerized power source such that the window is darkened when the sun shines on them or on a sensor placed on a particular side of a building.
Devices of reversibly variable transmittance to electromagnetic radiation, wherein the transmittance is altered by electrochromic means are described, for example, by Chang, “Electrochromic and Electrochemichromic Materials and Phenomena,” in Non-emissive Electrooptic Displays, A. Kmetz and K. von Willisen, eds. Plenum Press, New York, N.Y., pp. 155-196 (1976) and in various parts of Eletrochromism, P. M. S. Monk, R. J. Mortimer, D. R. Rosseinsky, VCH Publishers, Inc., New York, N.Y. (1995). Numerous electrochromic devices are known in the art. See, e.g., Manos, U.S. Pat. No. 3,451,741; Bredfeldt et al., U.S. Pat. No. 4,090,358; Clecak et al., U.S. Pat. No. 4,139,276; Kissa et al., U.S. Pat. No. 3,453,038; Rogers, U.S. Pat. Nos. 3,652,149, 3,774,988 and 3,873,185; and Jones et al., U.S. Pat. Nos. 3,282,157, 3,282,158, 3,282,160 and 3,283,656.
In addition to these devices there are commercially available electro-optic devices and associated circuitry, such as those disclosed in U.S. Pat. No. 4,902,108, entitled “Single-Compartment, Self-Erasing, Solution-Phase Electro-optic Devices Solutions for Use Therein, and Uses Thereof”, issued Feb. 20, 1990 to H. J. Byker; Canadian Patent No. 1,300,945, entitled “Automatic Rearview Mirror System for Automotive Vehicles”, issued May 5, 1992 to J. H. Bechtel et al.; U.S. Pat. No. 5,128,799, entitled “Variable Reflectance Motor Vehicle Mirror”, issued Jul. 7, 1992 to H. J. Byker; U.S. Pat. No. 5,202,787, entitled “Electro-Optic Device”, issued Apr. 13, 1993 to H. J. Byker et al.; U.S. Pat. No. 5,204,778, entitled “Control System For Automatic Rearview Mirrors”, issued Apr. 20, 1993 to J. H. Bechtel; U.S. Pat. No. 5,278,693, entitled “Tinted Solution-Phase Electrochromic Mirrors”, issued Jan. 11, 1994 to D. A. Theiste et al.; U.S. Pat. No. 5,280,380, entitled “UV-Stabilized Compositions and Methods”, issued Jan. 18, 1994 to H. J. Byker; U.S. Pat. No. 5,282,077, entitled “Variable Reflectance Mirror”, issued Jan. 25, 1994 to H. J. Byker; U.S. Pat. No. 5,282,077, entitled “Variable Reflectance Mirror”, issued Jan. 25, 1994 to H. J. Byker; U.S. Pat. No. 5,294,376, entitled “Bipyridinium Salt Solutions”, issued Mar. 15, 1994 to H. J. Byker; U.S. Pat. No. 5,336,448, entitled “Electrochromic Devices with Bipyridinium Salt Solutions”, issued Aug. 9, 1994 to H. J. Byker; U.S. Pat. No. 5,434,407, entitled “Automatic Rearview Mirror Incorporating Light Pipe”, issued Jan. 18, 1995 to F. T. Bauer et al.; U.S. Pat. No. 5,448,397, entitled “Outside Automatic Rearview Mirror for Automotive Vehicles”, issued Sep. 5, 1995 to W. L. Tonar; and U.S. Pat. No. 5,451,822, entitled “Electronic Control System”, issued Sep. 19, 1995 to J. H. Bechtel et al. Each of these patents is commonly assigned with the present invention and the disclosures of each, including the references contained therein, are hereby incorporated herein in their entirety by reference.
Photoelectrochromism is discussed generally in pages 192-197 of Electrochromism, P. M. S. Monk, R. J. Mortimer, D. R. Rosseinsky, VCH Publishers, Inc., New York, N.Y. (1995). Specifically, section 12.2.3, entitled “Cells Containing Photovoltaic Materials”, discusses how a photovoltaic material produces a potential when illuminated and where the photovoltaic material has an internal rectifying field which provides a driving force for the electrons. This section goes on to describe that the voltage created by the photovoltaic material is insufficient, by itself, to darken the electrochromic material. Therefore the electrochromic cell incorporating a photovoltaic material needs an external bias applied which is supplemented by the small photovoltaic-voltage to cause electron transfer to proceed, i.e., have the electrochromic material darken.
Heretofore, various other electrochromic devices have been devised wherein the transmission of light therethrough or reflected thereby automatically varies as a function of light impinging thereon. For example: U.S. Pat. No. 5,377,037, entitled “Electrochromic-Photovoltaic Film for Light-Sensitive control of Optical Transmittance” to H. M. Branz et al. teaches a variable transmittance optical component which includes a solar cell-type photovoltaic device. The photovoltaic material is deposited over the entire surface of a transparent electrically conductive layer section. The photovoltaic material includes a p-type hydrogenated silicon carbide section, an undoped hydrogenated silicon carbide section, and phosphorous-doped hydrogenated silicon carbide section. A standard solid-state electrochromic multilayer structure is then deposited over the layer of photovoltaic material such that the light traveling through the optical transmitter must travel through the photovoltaic material and through the electrochromic material. The photovoltaic material will absorb some portion of the light and will also create sufficient current to darken the electrochromic material. Solid-state electrochromic devices with good memory, once darkened, will not clear or bleach quickly without an external method of closing the electrochemical circuit, i.e., the device will not clear in a reasonable time even though the “darkening potential” is removed. The device taught by Branz et al. attempts to overcome this significant limitation by connecting a bleeder resistor to the two transparent conductive electrode layers to provide the electric potential and circuit across the device (to slowly bleach the device). In operation, the photovoltaic device produces a DC current which is applied between the transparent conductive layers and across the bleeder resistor. However, it takes a light source with the intensity of 1-2 suns to produce a transmission drop of only 10 percent, in approximately 12-13 minutes. Thus, incorporating a bleeder resistor complicates the circuitry required for the window system and also draws some power that otherwise could be used in darkening.
U.S. Pat. No. 5,348,653, entitled “Stand-Alone Photovoltaic (PV) Powered Electrochromic Window” to D. K. Benson et al. teaches a variable transmittance double pane window including a five-layer solid state electrochromic portion, an array of photovoltaic cells with a n-type conductivity region on the front side of a p-type silicon substrate, and an external switch-containing circuit. The photovoltaic cells are deposited directly on the glass and not on the transparent electrode. The photovoltaic cells and the battery circuit are connected in parallel to the electrochromic portion of the device. This allows selective activation of the electrochromic portion to either a substantially opaque state or a substantially transparent state by switching the external switch-containing circu

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electro-optic device incorporating a discrete photovoltaic... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electro-optic device incorporating a discrete photovoltaic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electro-optic device incorporating a discrete photovoltaic... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2924325

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.