Gas separation: apparatus – Electric field separation apparatus – With control means responsive to sensed condition
Reexamination Certificate
1999-02-12
2001-11-06
Chiesa, Richard L. (Department: 1724)
Gas separation: apparatus
Electric field separation apparatus
With control means responsive to sensed condition
C055S385100, C095S003000, C096S065000, C096S077000, C096S096000, C096S097000, C119S165000, C119S420000, C119S500000, C422S005000, C422S120000, C422S186070, C422S186100
Reexamination Certificate
active
06312507
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to reducing odor and the presence of undesirable parasites (germs, bacteria, fleas) from a pet container such as a litter box or shelter kennel, and more particularly to methods and devices for electro-kinetically producing a flow of air from such containers, from which particulate matter has been substantially removed, odors and the presence of parasites are removed. Preferably the air flow should contain safe amounts of ozone (O
3
).
BACKGROUND OF THE INVENTION
Pets can be welcome members to a household, but often pet containers such as a pet kennel or house or litter box can become malodorous. In addition to taking on the animal's odor, such containers may shelter fleas and other parasites brought in by the animal. In the case of litter boxes, unless the litter material is replaced sufficiently frequently, animal waste can create not only an unpleasant odor but a potential health hazard as well.
Electric motor driven fan blades may be used to create an air flow to air out the animal house or little box, but such fans are noisy, and can present an danger to children from moving fan blades and AC voltage used to power the fan. Further, with respect to odors, a fan merely dissipates the odor into the nearby environment without addressing the cause of the odor, which may include germs and bacteria.
It is known to produce an air flow using electro-kinetic techniques, by which electrical power is directly converted into a flow of air without mechanically moving components. One such system is described in U.S. Pat. No. 4,789,801 to Lee (1988), depicted herein in simplified form as
FIGS. 1A and 1B
. Lee's system
10
includes an array of small area (“minisectional”) electrodes
20
that is spaced-apart symmetrically from an array of larger area (“maxisectional”) electrodes
30
. The positive terminal of a pulse generator
40
that outputs a train of high voltage pulses (e.g., 0 to perhaps +5 KV) is coupled to the minisectional array, and the negative pulse generator terminal is coupled to the maxisectional array.
The high voltage pulses ionize the air between the arrays, and an air flow
50
from the minisectional array toward the maxisectional array results, without requiring any moving parts. Particulate matter
60
in the air is entrained within the airflow
50
and also moves towards the maxisectional electrodes
30
. Much of the particulate matter is electrostatically attracted to the surface of the maxisectional electrode array, where it remains, thus conditioning the flow of air exiting system
10
. Further, the high voltage field present between the electrode arrays can release ozone into the ambient environment, which appears to destroy or at least alter whatever is entrained in the airflow, including for example, bacteria.
In the embodiment of
FIG. 1A
, minisectional electrodes
20
are circular in cross-section, having a diameter of about 0.003″ (0.08 mm), whereas the maxisectional electrodes
30
are substantially larger in area and define a “teardrop” shape in cross-section. The ratio of cross-sectional areas between the maxisectional and minisectional electrodes is not explicitly stated, but from Lee's figures appears to exceed 10:1. As shown in
FIG. 1A
herein, the bulbous front surfaces of the maxisectional electrodes face the minisectional electrodes, and the somewhat sharp trailing edges face the exit direction of the air flow. The “sharpened” trailing edges on the maxisectional electrodes apparently promote good electrostatic attachment of particular matter entrained in the airflow. Lee does not disclose how the teardrop shaped maxisectional electrodes are fabricated, but presumably they are produced using a relatively expensive mold-casting or an extrusion process.
In another embodiment shown herein as
FIG. 1B
, Lee's maxisectional sectional electrodes
30
are symmetrical and elongated in cross-section. The elongated trailing edges on the maxisectional electrodes provide increased area upon which particulate matter entrained in the airflow can attach. Lee states that precipitation efficiency and desired reduction of anion release into the environment can result from including a passive third array of electrodes
70
. Understandably, increasing efficiency by adding a third array of electrodes will contribute to the cost of manufacturing and maintaining the resultant system.
Lee's electrostatic techniques offer advantage over conventional electric fans, but Lee's maxisectional electrodes are relatively expensive to fabricate. It is also difficult to increase efficiency in a Lee-type system without including a third array of electrodes.
Thus, there is a need for an electro-kinetic air transporter-conditioner that can be produced in a format suitable for deodorizing, conditioning, and ionizing the area within an animal house and/or a litter box. Such a device should provide improved efficiency over Lee-type systems, without requiring expensive production techniques to fabricate the electrodes. Preferably such a conditioner should function efficiently without requiring a third array of electrodes. Further, such a device should optionally generate safe amounts of ozone, for example to remove odor from ambient air. Preferably such a device should be manufacturable in a portable size, for example for use within a closed closet.
The present invention provides a method and apparatus for electro-kinetically transporting and conditioning air. Device embodiments are described to provide a flow of air that can contain ions and safe amounts of ozone, to deodorize and otherwise condition the air in the environment of an animal house and/or litter box. Further, such devices may be battery operated, to promote safety and portability.
SUMMARY OF THE PRESENT INVENTION
The present invention provides an electro-kinetic system for transporting and conditioning air without moving parts, for use with a pet container such as a litter box, an animal shelter or kennel. The air is conditioned in the sense that it is ionized and contains safe amounts of ozone.
The electro-kinetic air transporter-conditioner system is attached to an animal container such as a lather or kennel, and includes a compact louvered or grilled body that houses a battery-operated ionizer unit. The ionizer unit includes a high voltage DC inverter that boosts battery voltage to high voltage. The ionizer unit further includes a generator that receives the high voltage DC and outputs high voltage pulses of perhaps 10 KV peak-to-peak, although an essentially 100% duty cycle (e.g., high voltage DC) output could be used instead of pulses. The unit also includes an electrode assembly unit comprising first and second spaced-apart arrays of conducting electrodes, the first array and second array being coupled, respectively, preferably to the positive and negative output ports of the high voltage generator.
If desired, the present invention may be energized whenever detected odor in a litter box or kennel becomes excessive. In a litter box application, for example, an ammonia sensor is disposed within the system to detect NH
3
emanating from the litter box. When excess NH
3
is detected, the sensor output can command the ionizer unit to operate, either for a predetermined time or, using feedback, for as long as it takes for sensed NH
3
to drop below a desired threshold. Other sensor(s) may be used as sensed operation (with or without feedback) may be used in a kennel type application as well.
In the various embodiments, the electrode assembly preferably is formed using first and second arrays of readily manufacturable electrode types. In one assembly embodiment, the first array comprises wire-like electrodes and the second array comprises “U”-shaped electrodes having one or two trailing surfaces. In another embodiment, the first array includes at least one pin or cone-like electrode and the second array is an annular washer-like electrode. The electrode assembly may comprise various combinations of the described first and second array
Lau Shek Fai
Taylor Charles E.
Chiesa Richard L.
Sharper Image Corporation
LandOfFree
Electro-kinetic ionic air refreshener-conditioner for pet... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Electro-kinetic ionic air refreshener-conditioner for pet..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electro-kinetic ionic air refreshener-conditioner for pet... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2595653