Electro-hydraulic braking systems

Fluid-pressure and analogous brake systems – Speed-controlled – Having a valve system responsive to a wheel lock signal

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C303S119100, C303S122030

Reexamination Certificate

active

06318817

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to electro-hydraulic braking EHB systems for motor vehicles.
2. Discussion of the Background
Electro-hydraulic braking systems for motor vehicles are known which comprise a brake pedal, a braking device connected to at least one vehicle wheel, which is capable of being brought into communication with an electronically controlled valve arrangement, in order to apply hydraulic fluid under pressure to the braking device, a hydraulic pump, and a hydraulic pressure reservoir fed by said pump for the provision of hydraulic fluid under pressure which can be passed to the braking device via the electronically controlled valve arrangement, in order to apply hydraulic fluid under pressure, in proportion to the driver's braking demand as sensed at the brake pedal, to the braking device in so called ‘brake by wire’ mode.
In the case of an electro-hydraulic braking system of this form, the braking energy required for braking the vehicle is provided in normal use by the electrically-actuated braking system (“brake-by-wire” mode). In order however, to brake the vehicle with the minimum of delay in the event of an unexpected failure of the electrically-actuated bring system, the braking system can also feature an ancillary hydraulic braking system for the immediate actuation of the brakes (“push-through” mode).
The area of application of an electro-hydraulic braking system of his form encompasses anti-locking brake system control, anti-slip control, electronic brake force distribution, and Car Dynamic Control, or “CDC”.
In view of the fact that, with an electrically-actuated braking system, the driver's wishes are acquired by sensors at the brake pedal, and conducted to the electronic control system by means of electrical signals, such systems are described as electronic braking systems (EBS) or “brake-by-wire” systems.
To provide the redundant hydraulic emergency system, a direct connection can be established between the brake pedal and the brakes, in a conventional manner, by means of switch over valves and hydraulic lines, which is referred to as “push-through”. This system requires a switching device by which, under normal operating conditions, the brake pressure which is produced in the electrical system, and, in the event of a defect in or the failure of the electrical system, the brake pressure produced in the hydraulic ancillary system, is transferred to the brakes.
An electro-hydraulic braking system capable of operating using the “push-through” technique is known from U.S. application Ser. No. 721,019.
The control valve arrangement is usually designed as a slide valve, with the result that leakages and lack of fluid tightness are inevitable. Consequently, a drop in the pressure of the hydraulic fluid contained in the hydraulic pressure reservoir cannot be avoided, in particular if the vehicle remains out of operation for extended periods. In addition to this, with the conventional system, the components associated with the hydraulic pressure reservoir (lines, seals, connections, etc.) are constantly subjected to sustained high, and cyclically varying pressure levels which prevail in the hydraulic fluid supply system. This can lead to premature material fatigue, leaks, and similar problems.
According to the known system of DE-A-4115356, there is provided an electrohydraulic braking system wherein a main pressure accumulator supplies the pressure for operating the brakes under the majority of operating conditions but whose maximum value is less than the maximum possible braking demand pressure which may be required to be met in use of the associated vehicle. Upon recognition of a braking demand which exceeds that which can be achieved using the main accumulator, a second, supplementary accumulator is arranged to be switched in. However, this system can supply at higher than normal pressures only the volume stored in the supplementary accumulator. Once the latter volume has been consumed, the pump will re-pressurise the brakes at the same time as it is re-pressurising the main and supplementary accumulators, ie. relatively slowly.
According to DE-A-4328304 there is provided a vehicle having an arrangement for braking the vehicle automatically when a collision with another vehicle running ahead is predicted. The system has an oil pump and a single pressure accumulator. Under normal braking, fluid is supplied to the brake lines via a pair of depressurizing solenoid valves. When a collision is predicted and the vehicle is running at a low speed, the depressurising valves are closed, a pair of pressurizing solenoid valves are opened, and the pump is energized so that a relatively low pressure is supplied to the brake lines from the pump via the open depressurizing valves. When a collision is predicted and tie vehicle is running at a high speed, the repressurizing valves are closed, the pump is energised and the depressurizing valves are repeatedly opened and closed so that a higher pressure is supplied step-wise to the brake lines from the accumulator via the depressurizing valves. Again, the maximum pressure that can be supplied is limited to the low pump pressure at low vehicle speeds and to the (higher) accumulator brake pressure at medium or high vehicle speeds.
SUMMARY OF THE INVENTION
A first aim of the present invention is accordingly to develop an electro-hydraulic braking system capable of “push-through” operation which avoids the disadvantages outlined above, and is capable of meeting the high demand for safety.
Furthermore, in modern vehicle systems, there are requirements to reduce costs, component weight, complexity and, more recently, to reduce system energy consumption. These savings have to be made without detriment to safety or system function. In the case of an electronically controlled braking system (EBS or Brake by Wire) having automatic hydraulic or pneumatic (fluid) braking, savings can be made in all areas by addressing the issue of pressurised fluid storage for brake actuation.
In a typical EBS system, a fluid pressure accumulator (pressurised reservoir) is used to store fluid under pressure, charged by use of a fluid pump or compressor driven either by an electric motor or directly from the engine via a belt and pulley arrangement, for supply to a valve system which is adapted to supply the brake or brakes of a vehicle with fluid pressure in accordance with the level of driver's braking demand. Typically, the pressure at which the fluid is stored within the accumulator is set at a relatively high level, which is set so as to be sufficient to actuate the brakes of the vehicle over the complete braking range of the vehicle. In order to achieve this relatively high pressure storage, a high pressure accumulator and pump system has to be employed with sufficient volume to supply several low pressure demands as well as sufficient pressure and volume to supply the infrequent high pressure brake applications. Frequent motor starts in such systems are disadvantages and to be avoided if possible.
Such an accumulator and pump arrangement is relatively expensive and large and the frequent recharging of the accumulator up to the infrequently used high pressure levels consumes a significant excess of energy which has to be supplied by the vehicle electrical system or directly from an engine power take off, both of which degrade the fuel efficiency of the vehicle and increase component cost. Large accumulator and pump systems also add significant weight/mass to the brake system assembly which is undesirable from the vehicle manufacturers view point.
It is a second aim of the present invention to overcome the aforegoing problems by arranging for the accumulator system to be so arranged that the pressure level up to which the pump can supply will vary, within limits, in accordance with the braking demand.
In accordance with a first aspect of the present invention, there is provided an electro-hydraulic braking system for motor vehicles which comprises a brake pedal, a braking device

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electro-hydraulic braking systems does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electro-hydraulic braking systems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electro-hydraulic braking systems will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2610896

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.