Locks – Operating mechanism – Using a powered device
Reexamination Certificate
2000-05-04
2001-09-04
Barrett, Suzanne Dino (Department: 3627)
Locks
Operating mechanism
Using a powered device
C292S201000, C340S870030, C361S172000
Reexamination Certificate
active
06282931
ABSTRACT:
FIELD OF THE INVENTION
The present invention generally relates to an actuator assembly, and more specifically, to an electrically operated actuator for use with dead-bolt assemblies and other door locks.
BACKGROUND OF THE INVENTION
A convenient and reliable locking assembly for doors is a critical and important part of any security system. In commercial settings, property must be secured to prevent theft and vandalism. In residential settings, a convenient and reliable locking assembly may even be more important where the safety of the inhabitants is also at stake.
Traditionally, mechanically operated locking assemblies are used in which the operator inserts a key into the locking device and then rotates the key to retract or extend a bolting mechanism. While this mechanical solution is reliable, there are many inconveniences associated with using a mechanical key system. For example, for a person in a dark area, it is difficult to find the key, orient the key, and insert it into the lock. Also, for a person occupied with carrying items, it is difficult to manage the items and also manipulate a key. These are only a few of the many limitations and inconveniences associated with a mechanically operated locking system.
Electrically operated locking assemblies have been proposed to address the limitations of purely mechanical locks. For example, U.S. Pat. Nos. 3,733,861, 4,148,092 and 5,487,289, issued to Lester, Martin and Otto, III, et al., respectively, disclose electrically activated locks. However, these locks provide an electrically operated passive means for restraining manual operation of the bolt mechanism. These systems do not have an active means for extending and retracting the bolt mechanism directly. Further, some of these systems do not allow concurrent manual and electric operation.
Recently the automobile industry has adopted remote controlled devices to actuate automobile door locks. The convenience of these remote control capabilities is tremendous in comparison with mechanically operated locks and has been well accepted by consumers. However, the use of remote controlled locking systems for doors outside of the automobile industry has been limited due to no reliable and economical actuating assembly which can be used with doors and dead-bolt assemblies such as those found in residences. In particular, there is no actuating assembly which can be adapted to utilize conventional dead-bolt assemblies and also retain the ability to use the conventional key method of operating a dead-bolt assembly. Further, there is no actuating assembly that can be retrofit to an existing dead-bolt assembly.
Therefore, a need exists for an electrically operated actuator assembly for automation of the locking and unlocking of dead-bolt assemblies, and in particular, a need exists for an electrically operated actuator assembly that can preserve the conventional key method of operation and also be retrofit to an existing dead-bolt assembly.
SUMMARY OF THE INVENTION
Accordingly, an object of the present invention is to provide a convenient and reliable electrically operated actuating assembly.
A further object of the present invention is to provide an electrically operated actuator assembly which is adapted to respond to a remote transmitter/receiver device.
Another object of the present invention is to provide an electrically operated actuator assembly which can readily be adapted to dead-bolt assemblies for doors so that both a conventional key and a remote transmitter can be utilized to operate the dead-bolt assembly.
Another object of the present invention is to provide an electrically operated actuator assembly which can be easily added to, or retrofit for, a conventional dead-bolt assembly already installed on a door.
In accordance with the present invention, all of these objects, as well as others not herein specifically identified, are achieved generally by an electrically operated, remote-controlled actuator assembly which can be used with a locking system while preserving the option of using a key in a standard mode. More specifically, as discussed below, the present invention includes a driving means and a rotating means which operate on a conventional lock or dead-bolt assembly.
A conventional dead-bolt assembly includes a bolt, a drive bar, a cylinder which receives a conventional key on the exterior side of the door, and either a knob or another cylinder on the interior side of the door. The bolt is coupled to the drive bar such that rotation of the drive bar extends or retracts the bolt, depending on the direction of rotation. The exterior cylinder and the interior cylinder, if there is one, are coupled to the drive bar such that a key may be inserted into either cylinder and turned to rotate the drive bar, extending or retracting the bolt. Similarly, if there is a knob, rather than a cylinder, attached to the drive bar, the bolt can be extended or retracted by rotation of the knob.
In accordance with the present invention, a rotating means is coupled to the drive bar such that the rotating means is capable of rotating the drive bar and thus the bolt. The driving means, in response to an electrical signal, actuates the rotating means to effect the extension or retraction of the bolt, causing a locking or unlocking operation. After actuation by the driving means, the rotating means is placed in a state whereby the bolt may be extended or retracted manually, that is, by use of a key or knob, or automatically by the driving means.
In one embodiment, the rotating means includes a resilient lever that is attached to the drive bar to rotate the drive bar, causing the bolt to extend and retract. The resilient lever has an axis of rotation that is coaxial with the axis of rotation of the drive bar. The driving means includes a motor capable of bidirectional rotation of a threaded rod extending therefrom. A threaded member is screwed onto the threaded rod, but means are provided to prevent rotation of the threaded member about the threaded rod, thereby allowing the threaded member to extend along the length of the threaded rod, depending on the direction of rotation of the motor. The threaded member has a protrusion positioned to engage the lever and pivot the lever from a first position wherein the bolt is extended, to a second position wherein the bolt is retracted. The lever is resilient so that the protrusion on the threaded member may force the lever out of its path when the lever has reached the end of its range of rotation, for example, when the lever has attained the first position or the second position. This allows the protrusion to be placed in a position such that the lever is free for rotating manually, as is required for key or knob operation, and also places the protrusion in position for reciprocal movement of the lever.
In another embodiment, the rotating means includes a rigid, non-resilient lever that is attached to the drive bar to rotate the drive bar, causing the bolt to extend and retract. The rigid lever has an axis of rotation that is coaxial with the axis of rotation of the drive bar and is pivotable from a first position wherein the bolt is extended, to a second position wherein the bolt is retracted. The driving means includes a bidirectional motor capable of rotating a threaded rod extending therefrom. An actuating arm with a first protrusion at one end of the arm and a second protrusion at the opposite end of the arm is threaded onto the threaded rod such that rotation of the motor causes the arm to extend along the length of the threaded rod. The actuating arm is placed with respect to the lever such that the levers range of motion, that is, from the first position to the second position, is always between the first and second protrusions of the actuating arms. Thus, one protrusion can be extended by the motor to pivot the lever from the first position to the second position, while the second protrusion can be extended by the motor to pivot the lever from the second position to the first position. Whenever the motor is cycled to force the lever to
Brown David Corbett
Elpern David G.
Elpern Stephen R.
Evans Paul
Habib Walid
Access Technologies, Inc.
Barrett Suzanne Dino
Hill Reginald J.
LandOfFree
Electrically operated actuator and method does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Electrically operated actuator and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electrically operated actuator and method will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2452754