Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – At least one aryl ring which is part of a fused or bridged...
Reexamination Certificate
1999-09-16
2001-05-08
Cain, Edward J. (Department: 1714)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
At least one aryl ring which is part of a fused or bridged...
C524S496000, C152S152100
Reexamination Certificate
active
06228929
ABSTRACT:
FIELD
This invention relates to an electrically-conductive rubber composition and article of manufacture having a component thereof. In one aspect, such article of manufacture is a pneumatic rubber tire of a toroidal shape having a cavity designed to be substantially enclosed by the toroidal shape of the tire and its closure completed by a rigid rim onto which the tire is designed to be mounted. In another aspect, such pneumatic tire contains such rubber composition positioned on or within a rubber innerliner of the tire; wherein the innerliner is a surface of said cavity. In a further aspect, said rubber composition is an annular strip of an electrically-conductive rubber composition on or within such tire innerliner. The said annular strip is intended to be an antenna for having a capability of receiving electromagnetic waves from outside the tire and of transmitting electromagnetic waves from the inside of the tire to the outside of the tire.
BACKGROUND
Pneumatic tires are conventionally of a toroidal shape which defines a cavity which is substantially enclosed by the tire and the closure is conventionally completed by mounting the tire on an intended rigid rim. The tire conventionally has a rubber innerliner which is actually an exposed surface of the tire cavity. Such pneumatic tire configurations are conventional as would be understood by one having skill in such art.
Pneumatic tires usually rely upon air pressure to maintain their shape and associated performance during service conditions, although some pneumatic tires may be designed to hold their shape and provide representative performance, at least for limited times, even though they may have lost or are not able to maintain their internal air pressure for various reasons. For the purpose of the description of this invention, such tires are considered herein to be pneumatic tires even though they might be designed to run without an internal air pressure for limited periods of time.
For various applications, it may be desirable to provide a pneumatic rubber tire with a sensing device on or within its inner surface which has a capability of electronically receiving power generated from an electromagnetic wave generating source outside the tire and transmitting various data relating to the tire such as, for example, its internal air pressure relative to an external transmitting and receiving device.
It may be desirable to provide such a tire with a suitable antenna as an actual part of the tire for both receiving various electromagnetic signals from an exterior source and for transmitting various electromagnetic signals from within the tire to an external receiving device.
It may also be desirable to utilize a flexible rubber composition with relatively low electrical resistance to both physically and electrically connect various electrical devices such as, for example, connecting a microprocessing device or chip, which is positioned on or within an inner surface of the tire to an electrical wire.
In the case of one electrically-conductive element such as, for example, an electrically-conductive metal wire, it is envisioned herein that the rubber composition of this invention may be used to electrically connect at least two portions of the same element in the case of one element or of a multiplicity of elements in the case of two or more elements.
Accordingly, it is envisioned that a suitably electrically-conductive rubber composition would be desirable for connecting said microprocessing device to at least one additional non-rubber, electrically-conductive element such as, for example, a wire or other metallic electrical element or conductor, especially where considerable flexing at the point of connecting the electrical conductor to the microprocessor, or other electrical device or element, is concerned.
It is also envisioned, in one aspect, that such electrically-conductive rubber composition may be in a form of an aforesaid antenna as an annular strip of rubber positioned on or in a tire innerliner.
Such an antenna will necessarily have a suitable electrical-conductivity for its purpose and have a suitable elastomeric properties for compatibility with the inner rubber surface of the tire itself.
An example of use of an electrically-conductive rubber on an inner surface of a tire may be found, for example, in U.S. Pat. No. 5,743,973.
An important requirement for such electrically-conductive rubber composition is not only that it be relatively electrically conductive but, also, that it have physical properties suitable for inclusion within a tire component so that the electrical conductivity be maintained over time.
For the description of this invention, the term “phr” refers to “parts by weight of a designated ingredient in a rubber composition per 100 parts by weight of rubber”.
The terms “rubber” and “elastomer” are considered herein to be interchangeable unless otherwise indicated and, for the purposes of this description, a liquid rubber, which may be a diene hydrocarbon-based liquid rubber or an isobutylene-based liquid rubber, even though it is a liquid, it is referred to herein as a “rubber” which, upon curing, has rubbery properties. Non-liquid rubbers may be referred to herein as “solid rubbers”.
The terms “rubber compound” and “rubber composition”, or “elastomer composition”, where used, are considered herein to be interchangeable unless otherwise indicated.
SUMMARY AND PRACTICE OF THE INVENTION
In accordance with this invention, an electrically-conductive rubber composition is provided which is essentially free of and, therefore, preferably exclusive of, oil, particularly petroleum-based processing oil and is comprised of, based on 100 phr of rubber, (A) about 50 to about 95, alternatively about 70 to about 80, phr of at least one solid rubber, (B) about 5 to about 50, alternatively about 20 to about 30, phr of a liquid rubber selected from at least one of liquid diene-hydrocarbon liquid rubber and isobutylene based liquid rubber, and (C) about 10 to about 160, preferably about 30 to about 130, phr of at least one carbon black having an Iodine value (ASTM D1510) within a range of about 190 to about 1500, alternatively about 900 to about 1400, g/kg and a DBP value (ASTM D2414) within a range of about 110 to about 500, alternatively about 300 to about 500, cm
3
/100 g.
In further accordance with this invention, said solid rubber may be selected from (a) diene hydrocarbon-based rubbers as homopolymers and copolymers of conjugated diene hydrocarbons such as, for example, isoprene and 1,3-butadiene and copolymers of at least one conjugated diene hydrocarbon selected from isoprene and 1,3-butadiene with a vinyl aromatic compound selected from styrene and alpha-methylstyrene, preferably styrene, as well as tin coupled organic solvent solution polymerization prepared polymers of at least one of isoprene and 1,3-butadiene and copolymers of isoprene and/or 1,3-butadiene with styrene, or (b) an isobutylene-based rubber as a butyl rubber or halogenated butyl rubber as a copolymer, or halogenated copolymer, of isobutylene and a minor amount (e.g. from about 2 to about 8 phr) of a conjugated diene hydrocarbon such as, for example, isoprene.
In additional accordance with this invention, said liquid rubbers may be selected from (a) liquid conjugated diene hydrocarbon-based rubbers selected from polymers of at least one of isoprene and 1,3-butadiene and copolymers of isoprene and 1,3-butadiene with styrene or alpha-methylstyrene, preferably styrene or (b) an isobutylene-based rubber as, for example a copolymer of isobutylene and from about 2 to about 8 weight percent isoprene or such copolymer which has been halogenated with a halogen such as, for example, chlorine or bromine.
In the practice of this invention, if the solid rubber is a diene hydrocarbon-based rubber composition, then the liquid rubber is preferably also a diene hydrocarbon-based rubber for compatibility or the liquid rubber with the solid rubber purposes.
Correspondingly, if the solid rubber is an isobutylene-based rubber, then the liquid rubber is prefe
Beauvais Melissa Marie
Gasner Glenn Ervin
Larson Brent Kevin
Cain Edward J.
The Goodyear Tire & Rubber Company
Wyrozebski Katarzyna L.
Young, Jr. Henry C.
LandOfFree
Electrically conductive rubber composition and article of... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Electrically conductive rubber composition and article of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electrically conductive rubber composition and article of... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2452705