Electrically conductive non-aqueous wellbore fluids

Earth boring – well treating – and oil field chemistry – Earth boring – Contains organic component

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C507S136000, C507S137000, C507S138000, C507S139000, C507S140000, C507S261000, C507S264000, C507S265000, C507S266000, C507S267000, C507S268000, C507S269000, C507S270000, C175S050000, C166S254200

Reexamination Certificate

active

06787505

ABSTRACT:

This invention relates to non-aqueous wellbore fluids and in particular concerns wellbore fluids which are electrically conductive. The invention also relates to the use of said wellbore fluids for drilling fluids or completing fluids for subterranean wells such as for instance oil and gas wells.
In the process of rotary drilling a well, a drilling fluid or mud is circulated down the rotating drill pipe, through the bit, and up the annular space between the pipe and the formation or steel casing, to the surface. The drilling fluid performs different functions such as removal of cuttings from the bottom of the hole to the surface, to suspend cuttings and weighting material when the circulation is interrupted, control subsurface pressure, isolate the fluids from the formation by providing sufficient hydrostatic pressure to prevent the ingress of formation fluids into the wellbore, cool and lubricate the drill string and bit, maximise penetration rate etc. An important objective in drilling a well is also to secure the maximum amount of information about the type of formations being penetrated and the type of fluids or gases in the formation. This information is obtained by analysing the cuttings and by electrical logging technology and by the use of various downhole logging techniques, including electrical measurements.
The required functions can be achieved by a wide range of fluids composed of various combinations of solids, liquids and gases and classified according to the constitution of the continuous phase mainly in two groupings: aqueous (water-based) drilling fluids, and non-aqueous (mineral oil or synthetic-base) drilling fluids, commonly ‘oil-base fluids’.
Water-based fluids constitute the most commonly used drilling fluid type. The aqueous phase is made of fresh water or, more often, of a brine. As discontinuous phase, they may contain gases, water-immiscible fluids such as diesel oil to form an oil-in-water emulsion and solids including clays and weighting material such as barite. The properties are typically controlled by the addition of clay minerals, polymers and surfactants.
In drilling water-sensitive zones such as reactive shales, production formations or where bottom hole temperature conditions are severe or where corrosion is a major problem, oil-based drilling fluids are preferred. The continuous phase is a mineral or synthetic oil and commonly contains water or brine as discontinuous phase to form a water-in-oil emulsion or invert emulsion. The solid phase is essentially similar to that of water-based fluids and these fluids too contain several additives for the control of density, rheology and fluid loss. The invert emulsion is formed and stabilised with the aid of one or more specially selected emulsifiers.
Although oil-based drilling fluids are more expensive than water-based muds, it is on the basis of the added operational advantage and superior technical performance of the oil-based fluids that these are often used for the drilling operations.
An area where oil-based muds have been at a technical disadvantage, because of their very low electrical conductivity, is in electrical well-logging. Various logging and imaging operations are performed during the drilling operation, for example while drilling in the reservoir region of an oil/gas well in order to determine the type of formation and the material therein. Such information may be used to optimally locate the pay zone, i.e. where the reservoir is perforated in order to allow the inflow of hydrocarbons to the wellbore.
Some logging tools work on the basis of a resistivity contrast between the fluid in the wellbore (drilling fluid) and that already in the formation. These are known as resistivity logging tools. Briefly, alternating current flows through the formation between two electrodes. Thus, the fluids in the path of the electric current are the formation fluids and the fluid which has penetrated the formation by way of filtration. The filtercake and filtrate result from filtration of the mud over a permeable medium (such as formation rock) under differential pressure.
Another example where fluid conductivity plays an important part in the drilling operation is in directional drilling where signals produced at the drill assembly have to be transmitted through an electrically conductive medium to the control unit and/or mud telemetry unit further back on the drill string.
At present the use of resistivity logging tools is limited mainly to cases where a water-based drilling fluid is used for the drilling operation (the very low conductivity of the baseil in the case of oil/synthetic-base muds precludes the use of resistivity tools in such fluids). Although the brine dispersed in the oil phase is electrically conductive, the discontinuous nature of the droplets prevents the flow of electricity. Indeed, the inability of these emulsions to conduct electricity (until a very high potential difference is applied) is used as a standard test of emulsion stability. To that extent it is worth bearing in mind that the electrical conductivity k of the oil base is typically in the range 10
−6
to 5×10
−2
&mgr;S.m
−1
at a frequency of 1 kHz while an electrical conductivity of not less than 10 &mgr;S.m
−1
and preferably of no less than 10
3
&mgr;S.m
−1
is desirable for electrical logging operations. So there is a need to increase the electrical conductivity of the fluid by a factor in the order of 10
4
to 10
7
.
A few attempts to make oil-based drilling fluids electrically conductive for the purpose of electrical logging have been reported though none of them has been a commercial success. U.S. Pat. No. 2,542,020, U.S. Pat. No. 2,552,775, U.S. Pat. No. 2,573,961, U.S. Pat. No. 2,696,468 and U.S. Pat. No. 2,739,120, all to Fischer, disclose soap-stabilised oil-based fluids comprising an alkaline-earth metal base dissolved in up to 10% by weight water. Fischer claims to reduce the electrical resistivity to below 500 ohm-m which corresponds to an increase of conductivity to &kgr;>2000 &mgr;S m
−1
. However, those fluids happen to be very sensitive to contaminants and greater amounts of water lead to unacceptable increase of the fluid loss. In essence these fluids relied on the residual or added water content to dissolve the salts/surfactants. Moreover, the continuous oil phase fails to exhibit any increase of its electrical conductivity and there is no reference to what happens to the filtrate which under optimum conditions is made up essentially of the continuous oil phase.
Twenty five years later, U.S. Pat. No. 4,012,329 disclosed an oil-external micro-emulsion made with sodium petroleum sulfonate and reported of resistivity <1 ohm-m (&kgr;>1 S m
−1
). In such a micro-emulsion, the sodium petroleum sulfonate forms micelles that contain water and the clay so that the clay has to be added as a dispersion in water and cannot be added as dry powder. It should be also emphasised that a micro-emulsion is distinctly different from a standard emulsion, being thermodynamically stable, smaller in size, higher in surface to volume ratio and forming both filtercakes and fluid filtrate of a different nature. Obtaining the necessary combination of bulk properties and non-damaging rock interactions is more difficult than for a standard direct or invert emulsion fluid, and such fluids are not generally favoured for drilling oil wells.
Although the Prior Art contains formulations for making oil-based drilling fluid conductive, the methods so described adversely affect other mud properties, another reason why none have been successfully commercialised. Further, the Prior Art only addresses the problem of increasing the conductivity of the entire fluid but fails to teach any drilling fluid that exhibits a good conductivity of the oil phase making thus also a conductive filtrate which is free of solids and emulsion droplets.


REFERENCES:
patent: 2216955 (1940-10-01), Moore
patent: 2542020 (1951-02-01), Fischer
patent: 2552775 (1951-05-01), Fischer et al.
patent: 25576

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electrically conductive non-aqueous wellbore fluids does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electrically conductive non-aqueous wellbore fluids, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electrically conductive non-aqueous wellbore fluids will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3224066

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.