Stock material or miscellaneous articles – Coated or structually defined flake – particle – cell – strand,... – Rod – strand – filament or fiber
Reexamination Certificate
1998-05-08
2001-06-05
Edwards, N. (Department: 1774)
Stock material or miscellaneous articles
Coated or structually defined flake, particle, cell, strand,...
Rod, strand, filament or fiber
C428S370000, C428S374000, C428S372000
Reexamination Certificate
active
06242094
ABSTRACT:
BACKGROUND OF THE INVENTION
This invention relates to the field of electrically conductive fibers, especially antistatic fibers comprising polymeric materials, and a means for making same.
In many applications where fibrous materials are used, static electricity is often problematic. For example, in laybelt applications, where monofil fibers are often used, or in carpeting, where multiple yarns are frequently preferred, friction often produces static charges that interfere with the use or enjoyment of the material. Static electricity can cause a spark discharge of a static electrical charge that has built up, usually as a result of friction, on the surface of a non-conductive material. A material having a sufficient amount of electrical conductivity, i.e. low electrical. resistivity, to dissipate an electrical charge without a spark discharge would not exhibit problematic static electricity.
U.S. Pat. No. 3,969,559 teaches a textile antistatic strand comprising a thermoplastic polymer in which carbon black is uniformly dispersed to provide conductivity. The antistatic strand is partially encapsulated by another, non-conductive, thermoplastic polymer constituent. The electrical conductivity decreases as the tenacity of the fiber increases with increased draw and hot roll temperature.
U.S. Pat. No. 4,185,137 teaches a conductive sheath/core heterofilament having a thermoplastic polymer core in which is dispersed a material selected from the group consisting of zinc oxide, cuprous iodide, colloidal silver, and colloidal graphite.
U.S. Pat. No. 4,255,487 teaches an electrically conductive textile fiber comprising a polymer substrate which contains finely divided electrically conductive particles in the annular region at the periphery of the fiber.
U.S. Pat. No. 4,610,925 teaches an antistatic hairbrush filament having a nylon or polyester core and a compatible polymeric sheath containing carbon.
U.S. Pat. No. 3,803,453 teaches a synthetic filament comprising a continuous nonconductive sheath of synthetic polymer surrounding a conductive polymeric core containing carbon.
Although it is known to make conductive or antistatic polymeric fibers by including conductive particles, when such fibers are drawn to increase the strength of the fiber or orient the polymer molecules the conductivity is significantly reduced or eliminated.
SUMMARY OF THE INVENTION
The present invention is a polymeric antistatic bicomponent fiber comprised of a nonconductive component which comprises a first polymer and a conductive component which comprises a second polymer containing a conductive material at a level of at least 3% by weight. The conductive component has a resistivity of no more than about 10
8
ohm cm. The second polymer has a melting point of at least 180° C., and preferably at least 200° C. The first polymer melts at a temperature at least 20 C. higher than the second polymer and preferably at least 30° C. higher. The two components are each a continuous length of polymer which together make up a fiber which typically has a circular cross-section, though other cross-sections can also be made and are within the scope of the invention. The two components can be in a side-by-side or sheath-core arrangement with respect to one another. The two components adhere to each other sufficiently well that the two components do not separate from one another. The first component comprises about 50% to about 85% by weight of the fiber, and the second component about 15% to about 50% of the fiber. The bicomponent fiber is preferably in the form of a sheath-core fiber, having a non-conductive core made of the first polymer and a conductive sheath made of the second polymer, which contains a conductive material at a level of at least 3% by weight. The conductive sheath has a resistivity of no more than about 10
8
ohm cm. The fiber can be used as part of a multifilament yarn or can be used as a monofil. It can be used as a continuous filament or chopped into staple. The preferred fiber is a monofil having a diameter of at least 0.1 mm and preferably at least 0.25 mm.
A process for making such a fiber comprises the following steps: (1) co-extruding the first polymer and the second polymer, which contains a conductive material, at a temperature above the melting point of the first polymer to form a bicomponent fiber, which preferably is a sheath/core fiber, in which the core is made up of the first polymer and the sheath is made up of the second polymer; (2) stretching the fiber at a temperature below the melting point of the second polymer to form a stretched fiber with improved tensile properties; and (3) heat treating the stretched fiber at a temperature between the melting point of the first polymer and the melting point of the second polymer. Preferably, the lower melting polymer (the second polymer) has a melting point of at least 180° C., and preferably at least 200° C. The two melting points are at least 20° C. apart, and preferably at least 30° C. apart. Conductivity decreases or is lost when the fiber is stretched, apparently due to the disruption of the conductive sheath. The conductivity is partially or fully restored during the heat treatment.
It is an object of the present invention to provide an antistatic polymeric fiber having tensile properties comparable to ordinary polymeric fibers.
It is also an object of the present invention to provide a fiber having a nonconductive core containing a first polymer and a conductive sheath containing a second polymer.
It is a further object of the present invention to provide a novel process for making an antistatic polymeric fiber having a nonconductive core containing a first polymer and a conductive sheath containing a second polymer.
It is also an object of the present invention to provide a fiber having the tensile properties of a drawn, oriented polyester fiber and a resistivity in the sheath layer of no more than
10
8
ohm cm.
Other objects and advantages of the present invention will be apparent to those skilled in the art from the following description and the appended claims.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
In one preferred embodiment of the present invention, poly(ethylene terephthalate) (“PET”) is chosen as the core polymer and carbon-filled poly(butylene terephthalate) (“PBT”) is selected as the conductive sheath polymer. The PBT contains at least 3%, and preferably about 5% to about 15% by weight carbon particles (powder and/or fiber). These polymers are commercially available in a molecular weight suitable for fiber formation. The polymers are coextruded from a heterofil spinneret at a temperature of about 270° C. to about 290° C. to form a sheath/core fiber, which comprises a core of PET and a sheath of carbon-filled PBT.
The extruded sheath/core fiber has sufficient conductivity to provide antistatic properties. The fiber is then drawn to about four times its initial (as-extruded) length to increase its tensile strength, causing a loss of conductivity. Subsequently, the fiber is heat treated at about 240° C., restoring the conductivity. The heat treatment time is typically less than one minute, and can be selected by experimentation to give a desired conductivity, since the conductivity increases with increasing heat treatment time.
PET and PBT adhere well together because they are partially miscible. They have approximate melting temperatures of 265° C. and 235° C., respectively. These characteristics make these polymers wellsuited for use together in the present invention. The conductive PET/PBT fiber has an excellent combination of properties, including relatively high strength, low shrinkage, and low density. The high tensile strength and low shrinkage are characteristic of a drawn PET fiber. The sheath provides antistatic properties, while the strength of the PET core is retained. Tensile properties as measured by ASTM Method D-2256 are typically as high or higher than about 2 gpd tenacity and 40 gpd modulus, preferably higher than about 3 gpd tenacity and 50 gpd modulus.
In the practice of this invention, it is important to
Breznak Robert Anthony
Foldhazy Joseph Andrew
LaNieve, III Herman Leslie
Piesczek Wolfgang Alfred
Ritchie Robert Allen
Arteva North America S.a.r.l.
Clements Gregory N.
Edwards N.
LandOfFree
Electrically conductive heterofil does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Electrically conductive heterofil, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electrically conductive heterofil will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2503456