Electrically adjustable exterior rear-view mirror

Optical: systems and elements – Mirror – With support

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C359S874000, C359S877000, C248S480000

Reexamination Certificate

active

06612707

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to an electrically adjustable exterior rear-view mirror having an adjustably held glass subassembly and one or more electrical drive motors. The glass subassembly being adjusted by at least one adjustment mechanism arranged between the drive motor(s) and the subassembly. Furthermore, the invention relates to a drive module for use in an exterior rear-view mirror, where the drive module can be fitted in the exterior rear-view mirror housing of a vehicle and with the glass subassembly of the mirror arranged on the drive module.
BACKGROUND OF THE INVENTION
The invention relates to an electrically adjustable exterior rear-view mirror according to the preamble of claim 1. Furthermore, the invention relates to a drive module for use in an exterior rear-view mirror according to the invention, with the characteristics of claim 10.
Electrically adjustable exterior rear-view mirrors are used in motor vehicle engineering in a multitude of different designs. So as to provide optimal adjustment of the angle of view to drivers, irrespective of their stature and/or seat position, generic exterior rear-view mirrors comprise an adjustably held glass subassembly which, driven by at least one electrical drive motor, and comprising an adjustment mechanism provided between the glass subassembly and the drive motor, can be adjusted by remote control. In order to make possible optimal adjustment, the glass subassembly is usually arranged so as to be adjustable in relation to two swivel axes, so that any desired angle of view can be set within a specified actuating range. In order to be able to carry out the actuating movements in respect of the two swivel axes independently of each other, as a rule two drive trains, each with a drive motor, are provided.
In the known adjustment mechanisms, the conversion of the rotatory actuating movement of the drive motor to the desired tilting motion of the glass subassembly is effected by toothed racks, threaded spindles, toothed wheel work in the connecting links, or similar components. The known adjustment mechanisms for exterior rear-view mirrors all share the feature of effecting an actuating movement between two limit stops. The limit stops determine the maximum actuating range within which the glass subassembly can be swivelled.
The known drive concepts for exterior rear-view mirrors are associated with the disadvantage of special measures having to be taken to prevent damage to the drive train when the limit stops arc reached. In particular the use of sliding clutches is known which prevent damage to the adjustment mechanism by additional actuating movement of the drive motor after the limit stop has been reached. The incorporation of such sliding clutches is associated with considerable costs.
SUMMARY AND OBJECTS OF THE INVENTION
According to the invention, the adjustment mechanism used comprises a drive shaft with an eccentrically shaped shaft section and a drive bar arranged between the glass subassembly and the eccentrically shaped shaft section of the drive shaft. The drive shaft and the drive bar interact in such a way that a rotatory actuating movement of the drive shaft is converted to a linear actuating movement of the drive bar as a result of excursion of the eccentrically shaped shaft section. By means of the linear actuating movement of the drive bar, the desired tilting motion of the glass subassembly can be effected. Depending on the design of the eccentric shaft section, a lower and an upper dead centre result for the linear actuating movement of the drive bar. The limits of the actuating range within which the glass subassembly can be adjusted is determined by this upper and lower dead centre. If the glass subassembly is adjusted by remotely-controlled drive of the drive motor and if the glass subassembly reaches a limit of the swivelling range by moving to one of the dead centres, any additional actuating movement of the drive motor does not cause any driving against a limit stop, but instead merely the overshooting of the dead centre. Following overshooting of the dead centre, the tilting motion of the glass subassembly is continued in the opposite direction of travel.
Such a design of the adjustment mechanism has the effect that with permanent drive of the drive motor in one direction of rotation, the entire actuating range in an adjustment plane, within which the glass subassembly can be swivelled, is continuously cycled. A 360° rotation of the drive shaft causes the entire actuating range to be cycled-through twice. There is no mechanical limit of the actuating range; consequently there is no need to incorporate any safety measures such as for example sliding clutches.
One option in designing the adjustment mechanism is to configure the drive shaft in the manner of a crankshaft with a driving crank provided at the driven side of said crankshaft. One end of the drive bar is rotatably held at the driving crank. In this arrangements the upper and the lower dead centres result from the driving crank being in line with the drive bar.
As an alternative, it is also imaginable to shape the drive shaft in the manner of a camshaft, with at least one actuating cam being arranged on the driven side of said camshaft. One end of the drive bar can be made to rest against said actuating cam and is pushed against it by means of a pretension device. When the drive shaft is driven, the actuating cam pushes the drive bar further and further outwards, depending on the relative position between the actuating cam and the drive bar, until the highest point of the actuating cam is reached. If the rotation of the drive shaft is continued in the same direction, the drive shaft moves past the upper dead centre of the drive bar which is subsequently pushed inwards again by the pretension device.
Since in the exterior rear-view mirrors according to the invention the entire actuating range can be continuously cycled, it is adequate in many applications if the drive motor for adjusting the glass subassembly is driven only in one direction of rotation.
A further option for cost saving can be realised if the exterior rear-view mirror comprises two adjustment mechanisms via which the glass subassembly can be adjusted in relation to two different swivel axes while comprising only one drive motor. In this case both adjustment mechanisms must be able to be driven by the drive motor so as to allow actuating movements of the glass subassembly in relation to both swivel axes. It is for example imaginable that, depending on the desired movement, the drive motor can be adjusted between two positions in relation to a swivel axis, so that in the first position it drives the first adjustment mechanism and in the second position it drives the second adjustment mechanism.
With the use of the drive concept according to the invention, where the adjustment mechanisms need to be driven only in one direction, thus cycling through the entire actuating range, it is possible to minimise mechanical expenditure by only using one drive motor for both adjustment mechanisms, for example a magnet switch to switch the drive motor between the two adjustment mechanisms. This requires the use of a drive motor which can be driven in both directions of rotation, with a power takeoff mechanism being provided between the drive motor and the two adjustment mechanisms In the one direction of rotation of the drive motor said power takeoff mechanism essentially transfers the actuating movement exclusively to the first adjustment mechanism, and in the opposite direction of rotation of the drive motor it essentially transfers the actuating movement exclusively to the second adjustment mechanism. Thus, by means of the power takeoff mechanism, one direction of rotation of the drive motor is associated with one adjustment mechanism, so that by reversing the direction of rotation of the drive motor, selection of the respective adjustment mechanism and thus selection of the desired tilting motion in relation to one of the swivel axes become possible. Suitable power tak

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electrically adjustable exterior rear-view mirror does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electrically adjustable exterior rear-view mirror, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electrically adjustable exterior rear-view mirror will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3105756

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.