Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical therapeutic systems
Reexamination Certificate
2001-09-25
2004-03-09
Schaetzle, Kennedy (Department: 3762)
Surgery: light, thermal, and electrical application
Light, thermal, and electrical application
Electrical therapeutic systems
C607S005000, C607S034000, C607S029000
Reexamination Certificate
active
06704596
ABSTRACT:
The present invention relates to an electrically active medical implant with a circuit, at least one first battery to generate a low current into the circuit, a second battery to generate a high current, and a control means to disconnect the at least one first battery from the circuit and to connect the second battery to the circuit.
BACKGROUND OF THE ART
Medical implants, especially defibrillators, usually use two batteries as energy source. The first battery is designed to be a battery of low rate (the rate equals the amount of the charge and discharge current quantities related to the capacity of the battery, over a certain time period) and of a high storage capacity. On the contrary, the second battery is designed to be a battery of high rate and of a lower storage capacity. The battery with lower rate is used for normal monitoring and pacemaker functions, which require a current of the magnitude of about 10 &mgr;A, whereas the battery with high rate is applied to such activities as, e.g., the operation of a microprocessor and for therapy applications. During such activities with a high rate the required current is within the range between 200 &mgr;A and 1.5 A.
The battery with a low rate is typically a lithium iodide battery (LiI), whereas the battery with a high rate is a lithium-silver-vanadium oxide (SVO) battery or a lithium manganese oxide battery. The energy density (mAh per cm
3
) of a LiI battery, i.e., a battery with low rate, is typically double the energy density of a battery with a high rate.
However, since activities with a high rate are rare, the battery with a low rate is used most of the time. The switching to the battery with a high rate occurs when the voltage of the battery with a low rate falls under a pre-set voltage due to the internal resistance of the battery.
The service life of the implant is determined by the combined service lives of the battery with a low rate and the battery with a high rate. However, this applies only to the monitoring function. If a therapy or other activities with a high rate are required, the current quantity used during such activity must be taken into account (deducted from the capacity of the battery with a high rate) when determining the service life of the battery with a high rate.
Every battery contains more chemical energy than a circuit can extract. As the depletion of the battery grows, the internal resistance of the battery increases up to a point, at which the voltage decrease at the internal resistance (current x resistance) causes that the output voltage of the battery falls under the minimum voltage value useable by the circuit.
U.S. Pat. No. 6,044,295 discloses a medical implant comprising a first battery for components that require a low current, a second battery for components that require a high current, and a switching device. The switching device connects the second battery to a second therapeutic unit only while a control signal is transmitted that indicates that a pre-set voltage level of the first battery is not reached, or that the internal resistance has exceeded a specific value. Then the switching device connects the second battery also with a first therapeutic unit.
U.S. Pat. No. 6,008,625 discloses a medical implant with two batteries. The first battery operates the medical implant both in the monitoring mode, for example, when monitoring the heart beat frequency, and in the mode of charging the capacitors, which require an electrical discharge with a high rate. When the first battery is discharged down to a certain pre-set voltage level, the first battery is afterwards used only for the monitoring function. From this time on, the second battery is also used for electrical pulse discharges with a high rate. When the first battery is depleted down to a certain pre-set level, the second battery takes over both the monitoring of the implant and other the operation functions.
In both aforementioned documents, a battery is disconnected from the remaining circuit, when its output voltage falls under a certain pre-set voltage. The disadvantage of this procedure consists in the fact that the energy remaining in the battery at this point can not be used any more.
U.S. Pat. No. 5,814,075 discloses an ICD (implantable cardioverter/defibrillator) comprising two different batteries which are alternately switched on according to a theorem of the fuzzy rules. The rules are to be selected in such a manner as to optimally utilize both batteries, and an explantation is not required by the mere fact that one of the two batteries is depleted. The disadvantage consists in a costly control of the switching process.
European Patent application No. 0 771 576 discloses an ICD, in which the output voltages of two batteries are fed to a control through various voltage busses.
SUMMARY OF THE INVENTION
The object of this invention is to design an alternate medical implant that uses the energy present in the batteries to a maximum extent.
This invention resolves the task with an electrically active medical implant according to claim 1.
The underlying idea of this invention is to design an electrically active medical implant with a circuit, a first battery and a second battery to produce a low current and a high current into the circuit, and a control device to disconnect the first battery from the circuit and to connect the second battery to the circuit. A capacitor connected in parallel arrangement with the first battery is further charged by this battery during a first and a second circuit status. During the first circuit status only the first battery is connected to the circuit, during the second circuit status only the second battery is connected to the circuit. At the end of the second circuit status the second battery is again disconnected from the circuit by the control device, and the parallel arrangement consisting of the first battery and the capacitor is again connected to continue the energy supply of the circuit.
The advantage inherent to this invention consists especially in the fact that current can be extracted from the battery with the low rate - and fed into the implant—beyond the point, where the output voltage of the battery under normal load conditions would fall below the pre-set voltage level.
In a design version of the invention, in the first circuit status the circuit is supplied with energy from the parallel arrangement consisting of the first battery and the capacitor, whereas during the second circuit status it is the second battery that supplies energy. The first circuit status ends and the second circuit status begins when the voltage of the parallel arrangement falls under a pre-set voltage level. This procedure ensures that the voltage of the parallel arrangement is at least at a level required to supply the circuit.
In another version of this invention the second circuit status ends and the first circuit status starts again, when the voltage in the parallel arrangement is again regenerated, and exceeds the limit value by a certain pre-set amount. In other words, the second battery is connected to the circuit only until the voltage of the parallel arrangement consisting of the first battery and a capacitor is recovered or rather regenerated, and can again serve as a voltage source for the circuit.
In an especially preferred version of this invention, the second circuit status lasts until the voltage of the parallel circuit reaches approximately the battery voltage or the no-load voltage of the first battery. This process ensures that the first battery has enough time to re-load the capacitor.
In yet another preferred design version of this invention, the control device comprises a sensor to record the voltage of the parallel circuit at pre-set intervals. This process ensures that the voltage level in the parallel circuit is monitored at pre-set intervals so that the control device may connect the first battery to the circuit again, if possible.
Further design versions of the inventions are the subject of subclaims.
REFERENCES:
patent: 5285779 (1994-02-01), Cameron
patent: 5814075 (1998-09
Digby Dennis
Jr.
Schaldach Max
Biotronik Mess -und Therapiegeraete GmbH & Co. Ingenieurbuero Be
Grant Stephen L.
Hahn Loeser + Parks LLP
Jr.
Schaetzle Kennedy
LandOfFree
Electrically active medical implant does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Electrically active medical implant, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electrically active medical implant will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3238233