Electrical system for an outboard motor having an engine...

Internal-combustion engines – Starting device – With fuel or intake air control

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C440S085000

Reexamination Certificate

active

06557509

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention is generally related to an outboard motor electrical system and, more particularly, to an electrical system for an outboard motor which is equipped with a manual recoil starter.
2. Description of the Prior Art
Many different types of outboard motors are known to those skilled in the art. Some outboard motors are manually started through the use of a manual recoil starter. As is well known to those skilled in the art, manual recoil starters typically comprise a pull-rope which is used to manually initiate the rotation of the crankshaft of the engine. This, in turn, provides sufficient rotation of the crankshaft for the engine to begin operating in a self sustaining mode.
U.S. Pat. No. 5,988,132, which issued to Watanabe on Nov. 23, 1999, describes a pull starter for an outboard motor. The pull starter for an engine powering an outboard motor and having a cowling and a water propulsion device is disclosed. The engine is positioned in the cowling and has a generally vertically extending crankshaft. A lower end of the crankshaft is arranged to drive the water propulsion device. The starter includes a drum connected to the crankshaft at a top end of the engine, a starter cord having a first end connected to the drum and a second end connected to a handle, and a cord guide for guiding the cord through the cowling, the cord guide including an arcuate cord-engaging surface. The cord extends through the cowling in a first direction and is then guided by the arcuate surface of the cord guide into a second direction to the drum.
U.S. Pat. No. 5,988,130, which issued to Nakamura on Nov. 23, 1999, describes an electrical system for an outboard engine. The system is an electrical system for an engine of the type used to power a watercraft. A primary power supply of the system is connected to a main circuit by a feed circuit. A main switch controls the flow of power from the primary power supply to the main circuit through the feed circuit. An auxiliary power supply is connected to the main circuit in a manner which allows power to flow from the auxiliary power supply to the main circuit even if the main switch is preventing power to flow from the primary power supply to the main circuit.
U.S. Pat. No. 4,157,083, which issued to Smith et al on Jun. 5, 1979, describes a combination manual and power starter for engines. The device is a starter mechanism for an engine having a starter gear which includes a rotatable starter shaft. It includes a starter pinion rotatably mounted on the starter shaft for axial movement in response to rotation of the starter shaft in one direction to an engine starting position in driving engagement with the engine starter gear. It also includes a drive member mounted for rotation coaxially with the starter shaft and drivingly connected to the starter shaft. Manual starting of the engine is selectively effected by rotating a circular member or rotor drivingly connected to the drive member through a first one-way clutch which, in response to rotation of the rotor in the one direction, affords common rotary movement of the rotor and the drive member and permits free wheeling of the drive member relative to the rotor in the same direction when the rotor is not operated. Powered starting of the engine is selectively effected, independently of the manual starter, by a power unit including a driven gear mounted coaxially with the drive member and drivingly connected to the drive member through a second one-way clutch which, in response to operation of the power unit, affords common rotary movement of the drive gear and the drive member in the one direction and which permits free wheeling of the drive member relative to the driven gear in the same direction when the power unit is not operated.
U.S. Pat. No. 6,087,735, which issued to Nakumura on Jul. 11, 2000, describes a power circuit for marine engine. One embodiment of an engine has an electrical system generally comprising a charge circuit and an ignition circuit. A primary power supply circuit connects the charge circuit and the ignition circuit through a non-contact switch circuit. The non-contact switch is adapted to connect the primary power supply circuit to the ignition circuit when the engine is started. A secondary power supply circuit is coupled to at least one electrical component and to the ignition circuit. The secondary power supply circuit has a main switch and a fuse arranged upstream of the main switch. Upon closing the main switch, the engine is started and the primary power supply circuit and the associated non-contact switch are closed. Another embodiment of the engine has an electrical system which adds control of a fuel injector circuit. The fuel injector is in electrical communication with the ignition circuit and a switching circuit which controls the ignition circuit and the fuel injector circuit.
U.S. Pat. No. 5,937,829, which issued to Endou on Aug. 17, 1999, describes a fuel pump drive apparatus for fuel injection equipment for an internal combustion engine. A fuel pump drive apparatus for a fuel injection equipment for an internal combustion engine is capable of satisfactorily driving a fuel pump for a fuel injection equipment without being affected by a variation in a voltage across a battery. A magneto driven by the internal combustion engine is provided with a battery charging coil and a pump drive coil. An output of the pump drive coil is fed to a pump drive motor through the pump drive circuit including a voltage regulator. A diode is connected between a positive output terminal of a battery charging circuit and a positive output terminal of a pump drive circuit so that a current is fed from the battery through the diode to the pump drive motor only when a voltage across the battery is higher than an output voltage of the pump drive circuit. The voltage regulator of the pump drive circuit has an adjustment value set to be higher than a maximum value of the voltage across the battery.
U.S. Pat. No. 5,681,193, which issued to Pham et al on Oct. 28, 1997, describes a dual voltage regulated supply circuit for a marine propulsion device. A marine propulsion device includes a drive unit which is adapted to be mounted on a boat and which includes a propeller shaft, an internal combustion engine being drivingly connected to the propeller shaft, and an alternator generating first and second alternating current voltages. It also includes a circuit for receiving the first and second alternating current voltages and for generating, in response to the first and second alternating current voltages, first and second direct current voltages for providing electrical power to the internal combustion engine.
U.S. patent application Ser. No. 09/847,616, which was filed on May 2, 2001, by Sleder et al and assigned to the assignee of the present application, discloses a power supply for an outboard motor. An alternator for an outboard motor engine is provided with a split stator winding that is switchable between a first state and a second state. The first state, with the switch closed, places first and second stator windings in a series aiding configuration which is intended to provide sufficient power at starting speeds. Above a preselected engine load, a switch is opened to place the first and second stator windings in a completely independent parallel association to avoid the armature reaction normally associated with circulating currents in the non-isolated windings and phase shift associated with the alternator impedance and load impedance. Otherwise, lower output power at higher operating speeds would be experienced due to the reactance of the alternator's self-inductance.
The patents described above are hereby expressly incorporated by reference in the description of the present invention.
Many different types of outboard motor starting systems are well known to those skilled in the art, including manual start systems which incorporate a pull-rope. In many types of outboard motors, the rotational speed of the crankshaf

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electrical system for an outboard motor having an engine... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electrical system for an outboard motor having an engine..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electrical system for an outboard motor having an engine... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3053839

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.