Electrical stimulation of tissue for therapeutic and...

Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical therapeutic systems

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C607S063000, C607S072000, C607S074000

Reexamination Certificate

active

06505079

ABSTRACT:

CROSS-REFERENCE TO RELATED APPLICATIONS
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH
Not applicable.
BACKGROUND OF THE INVENTION
Alternative medicine approaches to the treatment of a variety of physical and mental conditions have been the subject of substantial investigation and interest. See: Journal of the American Medical Association (1998), 280 (18). Nontraditional techniques in the management of pain have ranged from classic acupuncture to the electrical stimulation of tissue. In the latter regard, the efficacy of electrical stimulation from skin surface attached electrodes have been the subject of a substantial amount of investigation. Referred to generally as transcutaneous electrical nerve stimulation (TENS), typically a relatively low level of current, for example, in the milliamp range which is manifested as a squarewave is introduced to some select region of the peripheral nervous system for a prescribed treatment interval. The frequency of this squarewave signal is relatively low, ranging generally from a few Hertz to about 100 Hertz and patient response to the application of such low frequency currents at the skin has been described as an unpleasant experience.
Somewhat recently, a combination of electrical stimulation and acupuncture has evolved. This technique differs from traditional acupuncture in that the needle itself is not the focus of treatment, instead, it serves as a conductor of electricity. One approach with electroacupuncture has been described as percutaneous electrical nerve stimulation (PENS). This PENS therapy utilizes acupuncture-like needle probes positioned in the soft tissue to stimulate peripheral sensory nerves at the dermatomal levels.
In the 1970s, Limoge, working in France, evolved an electroanesthesia electroanalgesia approach involving a different form of stimulation sometimes referred to as “Limoge currents” wherein, for example, a pulse cycle comprising pulses consisting of a positive wave for 2 &mgr;S is followed by a negative wave of 4 &mgr;S. The group has a period duration of 6 &mgr;S corresponding to 166 kHz. These groups have been referred to as bi-phasic balanced currents. They are gated on for four milliseconds followed by an off period of six milliseconds. The total cycle period thus is ten milliseconds corresponding to a 100 Hz gating cycle or burst frequency.
The integrals of the positive high frequency pulses and the negative high frequency pulses are maintained in balance. This results in a zero net applied current and eliminates or substantially abates a potential for electrophoresis. The current intensity generally will be from about 220 mA to about 250 mA peak to peak. In general, application of the current is by transcranial electrical stimulation (TCES) which is applied to the head through a frontal electrode and two posterior electrodes at the level of the mastoid bones. TCES treatment evidences no apparent side effects and has been used with very positive results in abdominal, urological gynecolgical and orthopedic surgery and traumatology and in addiction withdrawal therapy. TCES has been shown to enhance the potency of conventional pharmaceuticals during surgery and to evoke a reduction in the need for opiate analgesic during neuroleptanalgesia. Mathematical analysis of the Limoge currents indicates that the use of high frequency currents allow deep penetration of the electric field into the brain. It has been thought that the dielectric properties of biological tissue enables, in situ, the high frequency current combination with low frequency currents is responsible for the analgesic potentiaton. See the following publications:
Limoge, A., An introduction to electroanaesthsia. In: R. M. Johnson (Ed.), University Park Press, Baltimore, Md., 1975, pp. 1-121.
Limoge, A., Louville, Y., Barritault, L., Cazalaa, J. B. and Atinault, A., Electrical anesthesia. In: J. Spierdijk, S. A. Feldman, H. Mattie and T. H. Stanley (Eds.), Developments in Drug Used in Anesthesia, Leiden University Press, Leiden, 1981, pp. 121-134.
Limoge, A. and Boisgontier, M. T., Characteristic of electric currents used in human anesthesiology. In: B. Rybak (Ed.), Advanced Technology, Sijthoff and Noordhoff, German-town, 1979, pp. 437-446.
Champagne, Papiemak, Thierry, and Noviant, Transcutaneous Cranial Electrical Stimulation by Limoge Currents During Labor, Ann. Fr. Anesth. Reanim., Masson Paris, 1984.
Stanley, T. H., Cazalaa, J. A., Atinault, A., Coeytaux, R., Limoge, A. and Louville, Y., Transcutaneous cranial electrical stimulation decreases narcotic requirements during neuroleptic anesthesia and operation in man, Anest. Analg., 61 (1982) 863-866.
Stanley, T. H., Cazalaa, J. A., Limoge, A. and Louville, Y., Transcutaneous cranial electrical stimulation increases the potency of nitrous oxide in humans, Anesthesiology, 57 (1982) 293-297.
Ellison, F., Ellison, W., Daulouede, J. P., Daubech, F. E., Pautrizel, B., Bourgeois, M. and Tignol, J., Opiate withdrawal and electrostimulation double blind experiments, Encephale, 13 (1987) 225-229.
In support of an expanded utilization of the Limoge currents in the control and management of pain and a variety of medical conditions, investigators and practitioners now find need for improved generation equipment with heightened capacities for investigation of variations of the Limoge current signatures or characteristics and for utilization of these variations and their effect for diagnostic applications to treatment as well as therapeutic purposes.
BRIEF SUMMARY OF THE INVENTION
The present invention is addressed to the subject of electrobiological stimulation. It particularly is directed to the introduction of systems, devices and methods which not only support current therapeutic techniques of electrostimulation considered effective, but also provide investigators, including research clinicians, with a support system permitting enhanced research endeavors.
The system has been evolved with a recognition that an electrical waveform can be applied to a load, here tissue, exhibiting variable and unknown electrical impedance characteristics in a manner wherein those electrical characteristics can be analyzed. Those electrical characteristics will correspond with the tissue characteristics of the material constituting such load. For the present investigatory system, that load is the animal head. Expanding upon the electrode stimulation developed by Limoge (TCES) the present system exhibits enhanced procedures and efficiencies for carrying out now established therapeutic protocols. As an adjunct to these features, the system and technique provide apparatus and method with capabilities for supporting both patient stimulation as well as diagnosis and clinical research in electrobiological stimulation technologies. In the latter regard, the instant approach recognizes that rectangular wave comprising high frequency harmonics of base frequency signals with positive-going and negative-going features are combined to exhibit no d.c. term. In general, the ultimately derived waveforms are assembled by gating at a burst frequency. However, when said high frequency is applied to a biological load such as a human head, a resultant current waveform, when compared to the corresponding applied or feed point voltage waveform, will exhibit aberrations representing, for example, impedance characteristics of the cranial region through which current passes. Digitization and analysis of these two waveforms evolves valuable diagnostic data. Such analysis will include Fourier transform definition of both waveforms in conjunction with mathematical analyses thereof which manipulate data representing their differences. Laplace-mathematical operators also provide substantial analysis of the impedance characteristics throughout the region coursed by one or more channels of current flow. As is apparent, as such analysis is applied to an expanding patient population, an important database can be evolved with a library of accessible mathematical parameters, biological parameters and symptom parameters to evoke expanding diagnostic possi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electrical stimulation of tissue for therapeutic and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electrical stimulation of tissue for therapeutic and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electrical stimulation of tissue for therapeutic and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3058093

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.