Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical energy applicator
Reexamination Certificate
2002-09-05
2004-09-07
Evanisko, George R. (Department: 3762)
Surgery: light, thermal, and electrical application
Light, thermal, and electrical application
Electrical energy applicator
C607S149000, C607S152000, C607S153000
Reexamination Certificate
active
06788979
ABSTRACT:
Transcutaneous electrical nerve stimulation is used, for example, in post-operative and chronic pain control.
On the other hand, muscle stimulation is useful, for example, in maintenance and development of muscle tissue and is a particularly important function in sports medicine.
While significant advantages afforded through the use of electrical stimulation of nerves and muscles, its effectiveness can be enhanced when used in combination with a supporting compress, band or brace, which may not only provide for immobilization of the body part, but also proper placement and positioning of electrical stimulation electrodes with respect to the body part.
The use of stimulation electrodes necessarily mandates effective electrical coupling of the electrode to the skin. In order to accomplish this coupling, prior art devices have incorporated many types of conductive fluids and/or gels.
One type of electrode used for temporary application of muscle stimulation includes a flat, smooth contacting surface with a separate conductive cream or gel applied to the skin to electrically couple the electrode thereto. Experience with this system has shown that the cream and gel is messy to use and remove and the electrodes are not suitable for curved body parts. In addition, subsequent to use of the electrode, the cream or gel must be cleaned and washed from the skin and the electrode.
Another type of electrode more suitable for longer term application of electrical stimulation or monitoring includes a flexible conductive fabric or film material. In combination therewith, a conductive adhesive gel is utilized to perform a dual function of both electrically coupling the electrode to the body and adhering the electrode to the skin. While this type of electrode is effective, a great number of electrodes may be required to provide a long term treatment for certain conditions. When the electrodes are used in combination with a compress, band, brace gauntlet or other supporting garment or bandage, it is impractical to dispose of the supporting system due to loss of efficacy of the stimulation electrodes.
The present invention is directed to an electrical stimulation device which includes reusable compresses, bands, braces and the like, to a body part in which the electrical stimulation electrode is removably attached thereto.
This is accomplished in part through the use of electrical conductive pads, removably and electrically coupled to a compress or the like, which enables removable adherence to a body part.
A method encompassed by the present invention enables the precise placement of stimulation electrodes on a body part utilizing in combination electrical electrodes, or pads, with differential release adhesive thereon and a brace or compress.
SUMMARY OF THE INVENTION
An electrical stimulation device in accordance with the present invention for application to a body in part generally includes a flexible member for contacting a body part. The flexible member may have sufficient resiliency to act as a brace compress, splint or other function. Means are provided for tightly supporting the flexible member against the body part.
At least one electrical bus is provided which includes means, for enabling connection of the bus to an electrical lead wire. The bus also includes an electrical contact disposed on an inside of the flexible member.
A conductive pad is provided which has dimensions substantially smaller than dimensions of a flexible member. This enables the positioning of the conductive pad at one of an array of positions on the inside of the flexible member as long as it is placed in electrical communication with the contact on the inside of the flexible member.
A conductive pad generally includes cover electrically conductive gel adhesive layer means for removably adhering the conductive pad to the flexible member inside, with a first side of the cover layer means covering the bus contact and in electrical communication therewith.
A current controlling media is provided and adhered to a second side of the cover layer, and base electrically conductive gel adhesive layer means, disposed on the current controlling media, provides for removably adhering the conductive pad to the body part.
The electrical pad is, in fact, a multi-layer means, having differential release properties, for providing electrical interface between the patient's skin and the electrical bus. In this context, the multi-layer means includes a first layer (i.e., the base layer) comprising an electrically conductive gel having a relatively low peel strength, for removably contacting a body part, and a second layer means, (i.e., the cover layer), which comprises an electrically conductive gel having a relatively high peel strength, for contacting the flexible member inside and the electrical bus therein.
Thus, the cover layer means and the base layer means have adhesive properties enabling removal of the conductive pad from the body part by separation of the flexible member from the body part with the conductive pad remaining adhered to the flexible member during such separation. Subsequently, the pad may be removed from the flexible member inside surface and replaced due to the removable adhesive properties of the cover layer, or second layer means. Alternatively, as will be hereinafter discussed in greater detail, the adhesive properties of the layers may be selected in order that the flexible member may be removed with the pads remaining adhered to the body part.
In addition, the cover layer means and the base layer means may have adhesive properties enabling sliding of the conductive pad along the body part without separation of the conductive pad from the flexible member. This is important in positioning the device on the body. Thus, when the device is applied to the body, it may be moved into proper positioning which entails sliding the conductive pad along the body part without separation and misalignment of the conductive pad from the flexible member. The sliding property also facilitates placement, since adherence without the ability of translational movement, or sliding, would make placement of the device on a body part more difficult. Without the sliding property, the initial placement of the device on the body part would have to be exact. This, of course, does not allow for precise positioning of the electrical pads.
The device in accordance with the present invention may include a plurality of electrical busses disposed in a spaced apart relationship with one another in the flexible member and a plurality of conductive pads, each having dimensions substantially smaller than the flexible member dimensions. This arrangement allows for the exact relative positioning of pads with one another while at the same time allows a range of placement of each pad with respect to one another on the flexible member as long as each is utilized in contact with one of the busses. Thus, the flexible member can be uniformly made for use with patients having various size body parts, with the difference in size accommodated for by different spacing arrangements between the conductive pads on the flexible member.
The current controlling member may be a third gel, a conductive scrim, a conductive cloth, a conductive film or the like.
A method in accordance with the present invention for applying and positioning an electrical stimulation device on a body part generally includes the steps of removably adhering a plurality of conductive pads to a body part with a relative low peel strength electrically conductive layer. Thereafter, a flexible member is disposed onto the body part and removably adhered to the plurality of conductive pads with a lower peel strength layer. Each pad is electrically coupled to a respective electrical bus extending through the flexible member.
The body part is stimulated with electrical pulses and pads and the body part response to the electrical stimulation is determined.
The flexible member is removed from the body part and the conductive pads remain adhered to the body part. At least one of the conductive
Axelgaard Jens
Cornell George
Heard Steve
Axelgaard Manufacturing Co. Ltd.
Evanisko George R.
Hackler Walter A.
LandOfFree
Electrical stimulation compress kit does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Electrical stimulation compress kit, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electrical stimulation compress kit will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3230353