Machine element or mechanism – Gearing – Interchangeably locked
Reexamination Certificate
1997-10-31
2001-04-03
Estremsky, Sherry (Department: 3681)
Machine element or mechanism
Gearing
Interchangeably locked
C074S473120
Reexamination Certificate
active
06209408
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention generally relates to an electrical sensing system for a vehicle shifting system. More particularly, the present invention relates to an electrical sensing system that senses the position of a shift lever.
In the early years of automobiles, most automobiles included manual shift transmissions where an operator separately controlled clutch disengagement/engagement, speed of shifting, and engine rpm (i.e., throttle operation) as part of the shifting process. Modern vehicles in the United States are predominately automatic shift transmissions, where an operator merely positions a shift lever in a selected gear position and then presses on an accelerator, while the vehicle systems automatically control the speed of clutch engagement and the timing of shifting. Specifically, in modern automatically shifted vehicles, the operator positions a shift lever in park, reverse, neutral, or drive. However, the act of positioning the shift lever in a selected gear position is totally separate from controlling the actual shifting process, such that it does not give an operator the control provided by manually shifted transmission systems. It is desirable to come up with a design that does not require drivers to learn how to shift a manual vehicle transmission, including learning how to operate a clutch pedal, a brake pedal, and an accelerator pedal while simultaneously shifting a shift lever. Further, it is desired to provide a system compatible with existing driving skills and control technologies, and to provide a system where the driver does not have to operate a clutch if he or she prefers not to do so. In short, it is desirable to give more control of the shifting process back to the vehicle driver, but it is desired to do so in a manner that does not force the driver to relearn how to operate the vehicle and that allows the driver to be as active or passive as he or she may want to be. It is also desirable to utilize technologies that are compatible with and that take full advantage of the electronic vehicle systems in modern vehicles.
Some modern vehicles manufacturers are now specifying and/or designing shifting systems for automatic transmissions having an automatic shift mode (such as the well-known gear positions of “park,” “reverse,” “neutral,” and “drive” in most existing automatic transmission vehicle shifters), but also having a manual shift mode (where the shifter is movable between forced “upshift” and “downshift” positions, or where the shifter is movable between a forced fourth gear, a forced third gear, a forced second gear, and a forced first gear). These arrangements give some control back to a driver by allowing the driver to force certain gear changes in automatic transmissions, but they do not give an operator the “total” control and feel of early manual shifting systems, since these known systems do not allow the operator to directly affect or control the clutch, the speed of shifting, and the engine responses to same, as discussed above. For example, in known systems, clutch engagement and gear engagement is at best only indirectly affected by how hard a vehicle driver presses on the accelerator pedal of the vehicle. The driver does not directly control the clutch by any manipulation of a clutch pedal or clutch controller. The speed of shifting the shift lever into a gear position also has no direct effect on clutch operation, or engine/transmission parameters or vehicle operation.
In addition to the above, different vehicle operators prefer different “feels” of clutch engagement when shifting between gear positions. For example, some operators want a rugged, stiff “hard clutch” feel as a shift lever is moved between gear positions, while others prefer a smooth, “soft clutch” feel. Operators similarly differ in their preferences for engine speed and performance when shifting. Importantly, a specific operator's preferences may change over time, such as when a road is slippery with snow or ice, or when the road is dry and providing good traction. Vehicle manufacturers have attempted to provide different shifters and transmissions tailored for particular types of customers (e.g., sport car-type drivers or luxury car-type drivers) that customers can select from, and further have attempted to match shifters and transmissions to the types of customers expected to buy particular vehicle models. However, to our knowledge, vehicle manufacturers have not constructed a shifting system including a shifter that is variable and sensitive to shift behaviors of an operator as a shift lever is shifted, or that is adapted to make “real time” changes in shifting and vehicle operation as a result.
Most modern vehicles have shifters that include shift levers mechanically connected to a transmission such as by a Bowdan transmission cable or a rod-type mechanical linkage. This was done in part since mechanical connections were believed to be very reliable and trustworthy for the environment under a vehicle where a transmission is located. However, mechanically connected shift levers are expensive, relatively large, and include many parts. Also, the assembly of these shifters into vehicles is labor intensive and takes up valuable assembly space.
An improved system solving the aforementioned problems and having the aforementioned advantages is desired.
SUMMARY OF THE INVENTION
Accordingly, it is an aspect of the present invention to solve the above problems by providing an electrical sensing system for a shifter that provides not only information identifying the gear selected by the driver, but also information indicating the relative force applied to the shift lever. It is another aspect of the invention to provide a shifting mechanism that changes the smoothness or the hardness of the shift performed by the vehicle transmission based upon the force applied to the shift lever by the driver when shifting between gears. Still another aspect of the invention is to provide a shifter that outputs additional information from which the velocity of the shift lever may be derived by a transmission controller or a separate controller.
To achieve these and other aspects and advantages, the shifting system of the present invention comprises a shift lever movable between gear positions for operating a vehicle transmission, and a sensing device for sensing positions of the shift lever including at least one position that is intermediate the two gear positions, the sensing device generates an electrical output signal indicating movement of said shift lever between the two gear positions when the sensing device detects the presence of said shift lever at the at least one position.
Another aspect of the present invention is to provide an electrical sensing system for a shifting mechanism that enables the gear positions of the shifting mechanism to be reconfigured and customized after manufacture without requiring a change in hardware. To achieve this and other aspects and advantages, the electrical sensing system of the present invention comprises sensing means for sensing a position of the shift lever relative to the two-dimensional plane and for generating an electrical output signal representing the sensed position of said shift lever, and a controller for associating specific transmission gears with defined positions of the shift lever that are sensed by the sensing means. The controller preferably includes means for enabling an operator to select which transmission gears the controller associates with the defined positions.
These and other features and advantages of the present invention will be further understood and appreciated by those skilled in the art by reference to the following specification, claims and appended drawings.
REFERENCES:
patent: 3910388 (1975-10-01), Moori et al.
patent: 4144424 (1979-03-01), Takeda et al.
patent: 4158404 (1979-06-01), Yamashita et al.
patent: 4267907 (1981-05-01), Hiraiwa
patent: 4344514 (1982-08-01), Fujihara et al.
patent: 4466279 (1984-08-01), Gable et al.
patent: 4570502 (1986-02-01), Klatt
patent: 462
Bryant Eric W.
DeJonge Robert A.
Fisher Daniel J.
Estremsky Sherry
Grand Haven Stamped Products
Price Heneveld Cooper DeWitt & Litton
LandOfFree
Electrical sensing system for a vehicle shifter does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Electrical sensing system for a vehicle shifter, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electrical sensing system for a vehicle shifter will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2509538