Electrical resistance heater and method for crystal growing...

Single-crystal – oriented-crystal – and epitaxy growth processes; – Apparatus – With means for treating single-crystal

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06503322

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates generally to crystal growing apparatus used in growing monocrystalline ingots, and more particularly to an electrical resistance heater for use in such a crystal growing apparatus.
Single crystal silicon, which is the starting material for most semiconductor electronic component fabrication, is commonly prepared by the so-called Czochralski (“Cz”) method. The growth of the crystal is most commonly carried out in a crystal pulling furnace. In this method, polycrystalline silicon (“polysilicon”) is charged to a crucible and melted by a heater surrounding the outer surface of the crucible side wall. A seed crystal is brought into contact with the molten silicon and a single crystal ingot is grown by slow extraction via a crystal puller. After formation of a neck is complete, the diameter of the crystal ingot is enlarged by decreasing the pulling rate and/or the melt temperature until the desired or target diameter is reached. The cylindrical main body of the crystal which has an approximately constant diameter is then grown by controlling the pull rate and the melt temperature while compensating for the decreasing melt level. Near the end of the growth process, the crystal diameter must be reduced gradually to form an end-cone. Typically, the end-cone is formed by increasing the pull rate and heat supplied to the crucible. When the diameter becomes small enough, the ingot is then separated from the melt.
Heaters used for melting source material (e.g. silicon) in the crucible are typically electrical resistance heaters in which an electrical current flows through a heating element constructed of a resistive heating material (e.g., graphite). The resistance to the flow of current generates heat that radiates from the heating element to the crucible and silicon contained therein. The heating element comprises vertically oriented heating segments of equal length and cross-section arranged in side-by-side relationship and connected to each other in a serpentine configuration. That is, adjacent segments are connected to each other at the tops or bottoms of the segments in an alternating manner to form a continuous electrical circuit throughout the heating element. The heating power generated by the heating element is generally a function of the cross-sectional area of the segments.
Although the conventional apparatus used for growing single crystal ingots according to the Czochralski growth method has been satisfactory for growing crystal ingots useful in a wide variety of applications, further improvements in the quality of the semiconductor material are desirable. As the width of integrated circuit lines formed on the semiconductor material continue to be reduced, the presence of defects in the crystal become of greater concern. A number of defects in single crystal silicon form in the crystal growth chamber as the crystal cools after solidification. Such defects arise, in part, because of the presence of an excess (i.e., a concentration above the solubility limit) of intrinsic point defects, which are known as vacancies and self-interstitials. It has been suggested that the type and initial concentration of these point defects in the crystal ingot are determined at the time of solidification and, if these concentrations reach a level of critical supersaturation in the system and mobility of point defects is sufficiently high, a reaction, or an agglomeration event, will likely occur.
One important measurement of the quality of wafers sliced from a single-crystal ingot is Gate Oxide Integrity (“GOI”). Vacancies, as their name suggests, are caused by the absence or “vacancy” of a silicon atom in the crystal lattice. When the crystal is pulled upward from the molten silicon in the crucible, it immediately begins to cool. As the temperature of the crystal ingot descends through the temperature range of 1150° C. down to 1050° C., vacancies present in the ingot tend to migrate out toward the outer surface of the ingot or agglomerate together within the ingot. These agglomerations are manifested as pits within the surfaces of the wafers sliced from the crystal ingot.
Silicon wafers sliced from the ingot and manufactured according to conventional processes often include a silicon oxide layer formed on the surface of the wafer. Electronic circuit devices such as MOS devices are fabricated on this silicon oxide layer. Defects in the surface of the wafer, caused by the agglomerations present in the growing crystal, lead to poor growth of the oxide layer. The quality of the oxide layer, often referred to as the oxide film dielectric breakdown strength, may be quantitatively measured by fabricating MOS devices on the oxide layer and testing the devices. The Gate Oxide Integrity (GOI) of the crystal is the percentage of operational devices on the oxide layer of the wafers processed from the crystal.
It has been determined that the GOI of crystals grown by the Czochralski method can be improved by increasing the amount of time a growing ingot dwells in the temperature range above 1000° C., and more particularly in the range of 1150° C.-1000° C. If the ingot cools too quickly through this temperature range, the vacancies will not have sufficient time to agglomerate together, resulting in a large number of small agglomerations within the ingot. This undesirably leads to a large number of small pits spread over the surfaces of the wafer, thereby negatively affecting GOI. Slowing down the cooling rate of the ingot so that its temperature dwells in the target temperature range for a longer period of time allows more vacancies to move to the outer surface of the ingot or form large agglomerations within the ingot. The result is a small number of large agglomerations, thereby improving GOI by decreasing the number of defects present in the surface of the wafer upon which the MOS devices are formed.
Defects relating to self-interstitials are less well studied. They are generally regarded as being low densities of interstitial-type dislocation loops or networks. Such defects are not responsible for GOI failures, but they are widely recognized as the cause of other types of device failures usually associated with current leakage problems. It has been determined that the agglomeration of self-interstitials are undesirable and can be controlled by increasing the amount of time a growing ingot dwells in the temperature range above 1000° C. As portions of the ingot remain at temperatures above 1000° C. for relatively long time durations, radial out-diffusion of self-interstitials from the ingot occurs to suppress the concentration below the critical concentration required for agglomeration of interstitial defects.
To these ends, U.S. Pat. No. 5,248,378 (Oda et al.) discloses an apparatus for producing single silicon crystal in which a passive heat insulator is disposed in the crystal puller above the crucible to reduce the rate of cooling of the growing ingot above 1150° C. However, heat insulators or heat shields such as that disclosed by Oda et al. generally cannot slow the cooling of the ingot to a rate sufficient to substantially improve the GOI of the crystal or suppress the agglomeration of interstitial defects.
Oda et al. further disclose that the insulator may be replaced by a heater for heating the growing ingot. While a heater similar to the conventional crucible heater described above would more actively apply heat to the ingot to reduce the cooling rate, using such a heater has a number of disadvantages. For example, the heating power output of the conventional heater is generally constant along the height of the heater. A crystal ingot being pulled upward through the heater would be rapidly heated at the bottom of the heater to reduce the cooling rate of the ingot. The cooling rate would continue to decrease as the ingot passed upward through the heater and then increase upon reaching the top of the heater. For example, a plot of the axial temperature gradient of the ingot versus the ingot temperature would look similar to that shown in
FIG

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electrical resistance heater and method for crystal growing... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electrical resistance heater and method for crystal growing..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electrical resistance heater and method for crystal growing... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3037915

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.