Electrical method to control autonomic nerve stimulation of...

Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical therapeutic systems

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06775573

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention concerns the ability to electrically regulate the function and actions of the gastrointestinal system. Specifically, this invention is concerned with the muscle action of the small and large intestines and the production of enzymes and hormones by means of specifically coded electrical waveforms, which emulate the natural coded signals that normally control the gastrointestinal tract. The invention is aimed at modulating the autonomic nerve signals along or at critical nervous pathways by conducting or broadcasting low-voltage shaped signals so as to regulate, modulate or alter peristalsis activities and other digestive events for the benefit of the owner of the intestines.
The human and animal autonomic nervous system functions principally by operating the vegetative systems concerned with respiration, blood circulation and digestion. The brain provides central processing of information coming to it from the afferent nerve sensors and then makes a selection from stored signals in the brainstem that will turn on or off or modulate target organs. Once the specific signal selection is made then efferent instructional signals are sent on their way to do their regulatory work. In this application the focus is on modulating autonomic action in the digestive system.
The digestive regulatory action of this invention spans ability for modulation, demodulation, phase angle modulation, amplitude variation and blanking of either or both afferent and efferent electrical waveform codes concerning vegetative life activities of the digestive system. Gastrointestinal processing, including chemical participation at the neural synapses, muscular activity, enzyme and hormonal availability and the timing of all such events can be regulated with appropriate electrical signals. The invention utilizes emulated electrical codes for the purpose of improving the digestive process and to treat disorders with low voltage signals, which are conducted or broadcast into appropriate nervous segments.
The gastrointestinal (“GI”) function is to process consume food, to extract nutrients and to dispose of waste products of digestion. The digestive system is a twisted and shaped tube that starts with the mouth, throat, gullet (esophagus), stomach, ileum (small intestine), colon (large intestine), rectum and anus. This muscular tube is some 25 feet long with most of it coiled within the abdomen.
The inner layer of the tubal digestive system has a mucus layer that secretes enzymes, and other chemicals to aid digestion. There is a sub mucosal layer located directly beneath the mucus producing layer that is rich in blood vessels, networks of nerves and lymph vessels. This is where we find the reticuloendothelial tissue whose job it is to provide immune services against microbial infection and further services in ridding the body of cellular debris. Beneath the mucosal and sub-mucosal layers are the muscular layers consisting of two parts. It has circular and longitudinal muscles with some oblique control so that it can pass food down the tube while also mashing it. All of these layers operate in response to the autonomic nervous system. Absorption of nutrients occurs by diffusion, carrier transport or endocytosis.
Digestion begins in the mouth where the teeth reduce large food chunks to smaller pieces and saliva helps turn the food into a semi-liquid mass. This is swallowed into the 10 inches of esophagus at the rate of 2 or 3 inches per second to arrive at the stomach. The activity of the stomach is a back and forth mixing action where as the intestinal tract uses a motion that moves the food in one direction, downward. The stomach tends to contract at its entrance so as to prevent food from moving back into the esophagus and tends to propel the digesting food toward the pylorus of the stomach.
The action of the stomach is to mix enzymes, hormones and other secretions to produce what is now called chyme. The contraction at the pylorus (distal end of the stomach) allows finished acidified chyme to gradually leak into the duodenum (first 10 inches of the small intestine) while retaining solid food and continuing the back and forth mixing (much like a washing machine) in the stomach proper until it is small enough (particles of about 0.3 mm in size) to be accepted for intestinal processing.
The control of acid and enzyme secretion in the stomach is a delicate balance that depends on the appearance and nature of the food available. The autonomic nervous system controls this activity in the stomach via afferent sensors and efferent nerves. The most important nerve is the vagus nerve bundle, containing both afferent and efferent pathways, which travels all the way from the medulla oblongata of the brain, to direct digestive operations, especially codes for the secretion of digestive chemicals. The medulla also influences the salivary glands of the oral cavity that begins, with chewing, the food digestive process.
The passage of food down the gastrointestinal tract of humans and animals depends on a peristaltic reflex in each of the digestive organs. Peristalsis in the gastrointestinal tract involves muscular control of the tubal structures so as to mix and propel digestive product along a pathway at speeds that vary to allow the process to properly function. The peristaltic movements are paced in a worm-like and constrictive manner as directed by the nervous system coded instructions.
The small intestine is where the acidic chyme is gradually neutralized and becomes slightly alkaline as it is bombarded by a battery of enzymes from the pancreas including chymotrypsin and trypsin. Bile enters from the gallbladder to emulsify fats. Finger-like projections inside the small intestine have been formed by wrinkling the mucus membrane into epithelial folds. Each such fold contains projections called villi with micro-villi to absorb products of digestion.
The pancreas, acting as an exocrine gland, produces enzymes that aid in the digestion of fats, carbohydrates, proteins and nucleic acids. In addition the pancreas secretes a fluid high in bicarbonate, thusly neutralizing some of the stomach acid to avoid erosion of the intestinal linings. Acting as an endocrine gland, the pancreas secretes three hormones, glucagon, somatostatin and insulin, to manage the level of glucose, all being ordered by code electrical signs from the medulla oblongata.
After about 8 to 10 hours the digestive process is completed and has allowed for absorption of the available nutrients in the small intestine. The digestive product enters a structure at the end of the small intestine called the ileum, where it empties into the colon. Since all of the nutrients were absorbed in the small intestine all that remains are the waste products and a lot of water for the colon to deal with. As the colon absorbs the water its peristaltic action forms a stool while moving the waste product toward the rectal pouch and anus.
The act of defecating is a combination of reflex reactions and conscious control of three sheet muscles. The first is involuntary and the later two are under some voluntary control. The waste product is composed of digestible or indigestible food plus mucus, bacteria and water. Its brownish color is due to bile pigment and its odor comes from the bacterial breakdown products. Also present are colonic gases that are a combination of swallowed air, byproducts of the digestive process and considerable gases produced by chemical activities of resident bacteria.
Electrical signaling has played a pivotal part in operating the digestive process and has provided signals for the production of secretions needed for digestion. Most of these signals are autonomic and conduct their job with little conscious participation.
SUMMARY OF THE INVENTION
The invention provides a method for controlling autonomic nerve stimulation of the gastrointestinal tract. Stored waveforms that are generated and carried in the body are selected from a storage area. The selected waveforms are then transmitted to a treatment member which is i

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electrical method to control autonomic nerve stimulation of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electrical method to control autonomic nerve stimulation of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electrical method to control autonomic nerve stimulation of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3329438

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.