Electrical machine, and a drive arrangement for a vehicle

Motor vehicles – Power – Electric

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C180S065230, C180S065800, C322S001000

Reexamination Certificate

active

06571895

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an electrical machine having an electrical component including a rotor component and a stator component arranged in a housing, and having power electronics for controlling the machine arranged on the electrical component. The invention also relates to a drive arrangement for a vehicle having such an electrical machine arranged between the engine and the transmission.
2. Description of the Related Art
Electrical machines are generally rotating machines which use a magnetic field either on the motor principle to convert electrical energy into mechanical energy, or on the generator principle to convert mechanical energy into electrical energy.
Electrical machines of this type, which may, for example, be in the form of synchronous machines or asynchronous machines, have an electrical component which has a rotor component and a stator component. The stator component, also referred to as the stator, is generally the stationary part, while the rotor component, also referred to as the rotor, is the rotating part. Depending on the nature of the configuration of the electrical machine, the stator component comprises, for example, a laminated core which is formed from a yoke and a number of winding teeth. An electrical winding (coil) is arranged in the slots between these winding teeth. When a current flows through these windings, this produces the magnetic field of the electrical machine. The rotor component comprises, for example, a laminated core on which a number of magnets, for example permanent magnets, are arranged. Electrical machines of said type are in widespread use in the prior art, and are used in widely differing ways.
The electrical component of the electrical machine is normally arranged inside a housing, by which means it is protected against external influences and damage.
If, for example, the electrical machine is used in a drive arrangement for a vehicle, it may act, for example, as a so-called starter-generator. A starter-generator is, for example, a permanent-magnet synchronous machine which is arranged between the crankshaft of the internal combustion engine and a clutch, or a transmission, in the drive arrangement. The starter-generator first of all allows the internal combustion engine to be started. Furthermore, while driving, it can act as a generator, that is to say replacing the starter and the generator in the vehicle. The starter-generator can be connected via its housing to the internal combustion engine, or to the transmission.
Electrical machines such as the starter-generator described above are generally controlled via so-called power electronics. One example of such power electronics is that described in DE 199 13 450.2, which corresponds to U.S. Ser. No. 09/533,580, incorporated herein by reference. These power electronics comprise a power section which has a number of capacitors and a number of power semiconductors, with the power semiconductors and capacitors being connected to a power busbar system. Furthermore, the power electronics have a control unit for the power section. A high-performance microcontroller, for example, is provided as the controller. A power supply device is also provided. The power electronics are used to control the electrical component or components connected to them.
Particularly if the electrical machine is intended to be used in a vehicle, there is generally only a very small amount of space available, so that the physical dimensions of the electrical machine need to be optimized.
In the past, it has been normal practice in the vehicle industry to install the power electronics separately from the electrical component in the vehicle. In this case, the power electronics were normally mounted fixed to the vehicle. The disadvantage of this solution was, firstly, that it required a large amount of physical space. Furthermore, appropriate wiring was required for the power connections and sensor connections between the power electronics and the electrical component. The use of relatively long cables for this wiring resulted in a range of losses. If the electrical machine was configured as a starter-generator, these losses were, for example, losses in the generator mode, voltage drops during cold starting of the vehicle, problems relating to electromagnetic compatibility (EMC) and the like.
There was thus a need to avoid these disadvantages. One step to solving the problem was, for example, to arrange the previously separate power electronics for controlling the electrical machine on the electrical component, or to integrate the power electronics in that component.
One such solution is described in U.S. Pat. No. 5,678,646. This document discloses a drive arrangement for a vehicle, in particular a road vehicle. The prior-art description in this document cites a solution in which an electric motor and its electronic controller (power electronics for the motor) are integrated in a single housing. The housing in this case comprises two half-housings which can be connected to one another, with the components of the electric motor being arranged predominantly in one half-housing, and the components of the controller being arranged predominantly in the other half-housing. These two half-housings are then joined together.
This solution variant was found to have a disadvantage in that there was only ever one completed system whose individual components could not be modified for different vehicle types.
In order to avoid these disadvantages, U.S. Pat. No. 5,678,646 now describes a solution in which the electrical machine is modular. The electrical component of the electrical machine is located in one module, while the power semiconductors, and possibly parts of the control device, are accommodated in at least one further module. The individual modules are arranged axially one behind the other, and are attached to one another.
Modern power electronics, such as the electronics described in DE 199 13 450 2 cited above, have a wide range of components, some of which are quite large. Furthermore, the use of power busbar systems which, for example, are in the form of busbars, very largely dispenses with the need to connect the individual components by means of cables. One example of this is described in more detail further below within the description of the invention.
When such power electronics are used, an axial arrangement would, on the one hand, occupy a relatively large amount of physical space. Furthermore, the use of busbars makes it necessary for the individual components of the power electronics to be accommodated as close as possible to those components of the electrical component which need to be connected to them.
SUMMARY OF THE INVENTION
Against the background of the cited prior art, the present invention is based on the object of providing an improved electrical machine and an improved drive arrangement for a vehicle, in which the power electronics can be arranged on the electrical component of the electrical machine in a simple and cost-effective manner while avoiding the disadvantages cited in the prior art and while at the same time occupying only a small amount of space.
According to the first aspect of the invention, an electrical machine is provided having an electrical component which has a rotor component and a stator component and is arranged inside a housing, and having power electronics for controlling the electrical machine, which are arranged on the electrical component. According to the invention, the housing has a first housing wall which surrounds the electrical component in the circumferential direction, and has an accommodation space which extends radially outward from the first housing wall with respect to the rotation axis of the rotor component, and the individual components of the power electronics are arranged inside the accommodation space.
This configuration of the electrical machine results in a very compact and space-saving shape, with the individual components of the power electronics being arranged in the immediate

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electrical machine, and a drive arrangement for a vehicle does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electrical machine, and a drive arrangement for a vehicle, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electrical machine, and a drive arrangement for a vehicle will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3109730

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.