Chemistry: molecular biology and microbiology – Treatment of micro-organisms or enzymes with electrical or... – Cell membrane or cell surface is target
Reexamination Certificate
2000-07-19
2002-05-14
Weber, Jon P. (Department: 1651)
Chemistry: molecular biology and microbiology
Treatment of micro-organisms or enzymes with electrical or...
Cell membrane or cell surface is target
C435S173100, C435S287100, C435S288700
Reexamination Certificate
active
06387671
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to the field of electroporation and mass transfer across cell membranes in general and the transport of ions across a cell membrane in particular.
BACKGROUND OF THE INVENTION
Electroporation is a technique that is used for introducing chemical species into biological cells, and is performed by exposing the cells to an electric potential that traverses the cell membrane. While its mechanism is not fully understood, electroporation is believed to involve the breakdown of the cell membrane lipid bilayer leading to the formation of transient or permanent pores in the membrane that permit the chemical species to enter the cell by diffusion. The electric potential is typically applied in pulses, and whether the pore formation is reversible or irreversible depends on such parameters as the amplitude, length, shape and repetition rate of the pulses, in addition to the type and development stage of the cell. As a method of introducing chemical species into cells, electroporation offers numerous advantages: it is simple to use; it can be used to treat whole populations of cells simultaneously; it can be used to introduce essentially any macromolecule into a cell; it can be used with a wide variety of primary or established cell lines and is particularly effective with certain cell lines; and it can be used on both prokaryotic and eukaryotic cells without major modifications or adaptations to cell type and origin. Electroporation is currently used on cells in suspension or in culture, as well as cells in tissues and organs.
Electroporation is currently performed by placing one or more cells, in suspension or in tissue, between two electrodes connected to a generator that emits pulses of a high-voltage electric field. The pore formation, or permealization, of the membrane occurs at the cell poles, which are the sites on the cell membranes that directly face the electrodes and thus the sites at which the transmembrane potential is highest. Unfortunately, the degree of permealization occurring in electroporation varies with the cell type and also varies among cells in a given population. Furthermore, since the procedure is performed in large populations of cells whose properties vary among the individual cells in the population, the electroporation conditions can only be selected to address the average qualities of the cell population; the procedure as currently practiced cannot be adapted to the specific characteristics of individual cells. Of particular concern is that under certain conditions, the electrical potential is too low for a cell membrane to become permeabilized, while under other conditions electroporation can induce irreversible pore formation and cell death. A high electric field, for example, may thus produce an increase in transfection efficiency in one portion of a cell population while causing cell death in another. A further problem with known methods of electroporation is that the efficiency of transfection by electroporation can at times be low. In the case of DNA, for example, a large amount of DNA is needed in the surrounding medium to achieve effective transformation of the cell.
Many of the problems identified above are a consequence of the fact that the process of electroporation in both individual cells and tissues cannot be controlled in real time. There are no means at present to ascertain in real time when a cell enters a state of electroporation. As a result, the outcome of an electroporation protocol can only be determined through the eventual consequences of the mass transfer process and its effect on the cell. These occur long after the mass transfer under electroporation has taken place. These and other deficiencies of current methods of electroporation are addressed by the present invention.
Also relevant to the present invention are current techniques for the study and control of mass transfer across cell membranes. Knowledge of mass transfer across cell membranes in nature, both in cells that are functioning normally and in diseased cells, is valuable in the study of certain diseases. In addition, the ability to modify and control mass transfer across cell membranes is a useful tool in conducting research and therapy in modern biotechnology and medicine. The introduction or removal of chemical species such as DNA or proteins from the cell to control the function, physiology, or behavior of the cell provides valuable information regarding both normal and abnormal physiological processes of the cell.
The most common method of effecting and studying mass transfer across a cell membrane is to place the cell in contact with a solution that contains the compound that is to be transported across the membrane, either with or without electroporation. This bulk transfer method does not permit precise control or measurement of the mass transfer across the membrane. The composition of the solution at specific sites is not known and is variable. In addition, when an electric field is present, the local field intensity will vary from one point to another. Furthermore, the surface of the cell that is exposed to the solution is not well defined. Cell surface areas vary among cells in a given population, and this leads to significant differences among the cells in the amount of mass transfer. For these reasons, the amount of mass transfer achieved by bulk transfer processes is not uniform among cells, and the actual amount transferred for any particular cell cannot be determined.
Attempts made so far to overcome the limitations of bulk transfer techniques include techniques for treating individual cells that include either the mechanical injection (microinjection) of chemical compounds through the cell membrane or electroporation with microelectrodes. In injection techniques, the membrane is penetrated with a needle to deliver a chemical agent, localizing the application of the chemical agent to a small region close to the point of injection. This requires manipulation of the cell with the human hand, a technique that is difficult to perform, labor-intensive, and not readily reproducible. Electroporation with microelectrodes suffers these problems as well as the lack of any means to detect the onset of electroporation in an individual cell. These problems are likewise addressed by the present invention.
SUMMARY OF THE INVENTION
Devices, systems and particular methods are disclosed which make it possible to precisely monitor the movement of materials across a cell membrane. The information gained from monitoring the movement of materials across a cell membrane may be directly applied to deduce information with respect to the cell and/or its membrane. Alternatively, the information obtained from monitoring may be applied in order to control the movement of materials across the cell membrane such as by controlling the application of electrical current. Devices and systems of the invention make it possible to move charged molecules, and in particular ionic species, across a cell membrane and precisely monitor the occurrence of such. When carrying out electroporation using the devices, systems and methods of the invention the information obtained from monitoring the movement of the charged particles across the cell membrane is used to control the process of mass transfer across a cell membrane. Specifically, the system is used to obtain measurements and changes in electrical impedance across a cell membrane while the mass transfer properties of the cell are changed by the application of electrical current. Thus, information obtained on electrical impedance changes brought by the application of electrical current are used, in real time, in order to control the movement of charged molecules across a cell membrane.
One aspect of the invention is a method comprising creating an electrical charge differential between a first point and a second point separated from the first point by an electrically conductive medium comprising a biological cell. A first electrical parameter between the first and second points is then measured. A se
Huang Yong
Rubinsky Boris
Bozicevic Karl
Bozicevic Field & Francis LLP
The Regents of the University of California
Weber Jon P.
LandOfFree
Electrical impedance tomography to control electroporation does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Electrical impedance tomography to control electroporation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electrical impedance tomography to control electroporation will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2913905