Electrical heating of pipelines with pipe-in-pipe and...

Electric resistance heating devices – Heating devices – Fluid-in-circuit type heater

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C392S469000

Reexamination Certificate

active

06292627

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to electrical heating of subsea pipelines. More particularly the invention relates to electrical heating with a pipe-inside-pipe configuration and a connector to the pipes about midway between bulkheads at each end.
2. Description of Related Art
Offshore hydrocarbon recovery operations are increasingly moving into deeper water and more remote locations. Often satellite wells are completed at the sea floor and are tied to remote platforms or other facilities through extended subsea pipelines. Some of these pipelines extend through water that is thousands of feet deep and where temperatures of the water near the sea floor are in the range of 40° F. The hydrocarbon fluids, usually produced along with some water, reach the sea floor at much higher temperatures, characteristic of depths thousands of feet below the sea floor. When the hydrocarbon fluids and any water present begin to cool, phenomena occur that may significantly affect flow of the fluids through the pipelines. Some crude oils become very viscous or deposit paraffin when the temperature of the oil drops, making the oil practically not flowable. Hydrocarbon gas under pressure combines with water at reduced temperatures to form a solid material, called a “hydrate.” Hydrates can plug pipelines and the plugs are very difficult to remove. In deep water, conventional methods of depressuring the flow line to remove a hydrate plug may not be effective. Higher pressures in the line and uneven sea floor topography require excessive time and may create more operational problems and be costly in terms of lost production.
The problem of lower temperatures in subsea pipelines has been addressed by placing thermal insulation on the lines, but the length of some pipelines makes thermal insulation alone ineffective. Increased flow rate through the lines also helps to minimize temperature loss of the fluids, but flow rate varies and is determined by other factors. Problems of heat loss from a pipeline increase late in the life of a hydrocarbon reservoir because production rates often decline at that time. Problems become particularly acute when a pipeline must be shut-in for an extended period of time. This may occur, for example, because of work on the wells or on facilities receiving fluids from the pipeline. The cost of thermal insulation alone to prevent excessive cooling of the lines becomes prohibitive under these conditions.
Heating of pipelines by bundling the lines with a separate pipeline that can be heated by circulation of hot fluids has been long practiced in the industry. Also, heating by a variety of electrical methods has been known. Most of the proposals for electrical heating of pipelines have related to pipelines on land, but in recent years industry has investigated a variety of methods for electrical heating of subsea pipelines. (“Direct Impedance Heating of Deepwater Flowlines,” OTC 11037, May, 1999)
Two configurations for electrical heating have been considered. In one configuration, a single flowline is electrically insulated and current flows along the flowline. This is called the “SHIP” system (Single Heated Insulated Pipe). Two SHIP systems have been considered: the fully insulated system, requiring complete electrical insulation of the flowline from the seawater, and the earthed-current system, requiring electrical connection with the seawater through anodes or other means. For both systems, current is passed through the flowline pipe. A fully insulated method of electrically heating a pipeline is disclosed in U.S. Pat. No. 6,049,657. In this method, an electrically insulated coating covers a single pipeline carrying fluids from a well. An alternating current is fed to one end of the pipeline through a first insulating joint near the source of electrical current and the current is grounded to seawater at the opposite end of the pipe to be heated through a second insulating joint.
In the second configuration for electrical heating, a pipe-in-pipe subsea pipeline is provided by which a flow line for transporting well fluids is the inner pipe and it is surrounded concentrically by and electrically insulated from an electrically conductive outer pipe until the two pipes are electrically connected at one end. Voltage is applied between the inner and outer pipes at the opposite end and electrical current flows along the exterior surface of the inner pipe and along the interior surface of the outer pipe. This pipe-in-pipe method of heating is disclosed, for example, in Ser. No. 08/921,737, filed Aug. 11, 1999, which is commonly assigned and hereby incorporated by reference herein.
The pipe-in-pipe method of heating disclosed in the referenced patent application requires that the total voltage drop be maintained at the power supply-end of the pipe segment to be heated. The voltage drop at the power input end of a heated segment determines the amount of heating available and the length of a segment that can be heated. Voltage drop is limited by the dielectric strength and thickness of electrical insulation available. A configuration for minimizing voltage required with the pipe-in-pipe method is needed. Also, there is need for apparatus and method that allow heating selected segments of a pipeline that is heated by the pipe-in-pipe method. Capability for withdrawing electrical power from the ends of a heated segment is also needed.
SUMMARY OF THE INVENTION
Toward providing these and other advantages, apparatus and method are provided for enhancing the flow of fluids through a subsea pipeline by heating a segment of the pipeline using the pipe-in-pipe method by applying electrical voltage and withdrawing electrical current through electrical connections to the inner and the outer pipes at an intermediate point between the ends of the segment. Bulkheads between the inner and outer pipes may be used to electrically connect the pipes. In another embodiment one or both bulkheads may be replaced with a connector that makes possible withdrawal of power from one or both ends of the segment to be heated. In another embodiment electrical power is withdrawn from a selected location along the heated pipeline by placing a toroidal transformer in the annulus. The power supply may be a conventional electrical generator supplying alternating current or a direct current source. The electrical current is input through an electrical connection on the inner pipe, flows axially along the metal wall of the inner pipe, through a bulkhead at the remote ends of the segment to be heated, and returns to an electrical connection on the outer pipe. Multiple heated segments of the pipe-in-pipe configuration may be used—either contiguous or discontinuous. A riser having a pipe-in-pipe configuration may be heated as a segment of the pipeline.


REFERENCES:
patent: 3983360 (1976-09-01), Offermann
patent: 4142093 (1979-02-01), Offermann
patent: 6049657 (2000-04-01), Sumner
patent: 6142707 (2000-11-01), Bass et al.
patent: 2084284-A (1982-04-01), None
U.S. application No. 08/921,737, filed Aug. 11, 1999, pending.
“Direct Impedance Heating of Deepwater Flowlines,” OTC 11037, May, 1999.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electrical heating of pipelines with pipe-in-pipe and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electrical heating of pipelines with pipe-in-pipe and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electrical heating of pipelines with pipe-in-pipe and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2439263

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.