Electrical fault detection circuit with dual-mode power supply

Data processing: measuring – calibrating – or testing – Measurement system in a specific environment – Electrical signal parameter measurement system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C702S058000, C702S117000, C361S042000, C361S059000, C323S282000, C323S283000

Reexamination Certificate

active

06532424

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to the protection of electrical circuits and, more particularly, to the detection of arcing faults in an arcing fault protection assembly which includes a dual-mode power supply to power up the assembly quickly using an inefficient power mode, and then switch to a more efficient power mode after the second power mode reaches steady state.
BACKGROUND OF THE INVENTION
The electrical systems in residential, commercial and industrial applications usually include a panelboard for receiving electrical power from a utility source. The power is then routed through protection devices to designated branch circuits supplying one or more loads. These protection devices are typically circuit interrupters, such as circuit breakers and fuses, which are designed to interrupt the electrical current if the limits of the conductors supplying the loads are surpassed. The power connection to the electrical systems is reestablished either by resetting the circuit breakers or by replacing the fuses. If the cause of the overload to the system is not removed before the circuit breaker is reset or the fuse is replaced, the circuit interrupters will again interrupt the electrical current to the system. The circuit interrupters, however, will not detect the power overload until the power supplied to the interrupter reaches steady state. Adjusting the power to increase the time for the circuit to reach steady state will cause the interrupter to overheat.
Typically, ground fault detectors interrupt an electric circuit due to a disconnect or trip condition, such as a current overload or ground fault. The current overload condition results when a current exceeds the continuous rating of the breaker for a time interval determined by the trip current. A ground fault trip condition is created by an imbalance of currents flowing between a line conductor and a neutral conductor which could be caused by a leakage current or an arcing fault to ground.
Arcing faults are commonly defined as current through ionized gas between two ends of a broken conductor or at a faulty contact or connector, between two conductors supplying a load, or between a conductor and ground. Arcing faults, however, may not cause a conventional circuit breaker to trip. Arcing fault current levels may be reduced by branch or load impedance to a level below the trip curve settings of the circuit breaker. In addition, an arcing fault which does not contact a grounded conductor, object or person will not trip a ground fault protector.
There are many conditions that may cause an arcing fault, for example, corroded, worn or aged wiring, connectors, contacts or insulation, loose connections, wiring damaged by nails or staples through the insulation, and electrical stress caused by repeated overloading, lightning strikes, etc. These faults may damage the conductor insulation and cause the conductor to reach an unacceptable temperature.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide an arc fault and ground fault detection system that includes a dual-mode power supply to quickly power up the system and allow it to detect faults quickly after power is supplied to the system, i.e., after the system is reset.
Other and further objects and advantages of the invention will be apparent to those skilled in the art from the present specification taken with the accompanying drawings and appended claims.
In accordance with one aspect of the invention, there is provided an arcing fault and ground fault detection system comprising at least one sensor responsive to a current flowing in an electrical circuit for developing a corresponding sensor signal; a fault detector responsive to the sensor signal for detecting arcing faults and ground faults and producing corresponding output signals; a dual-mode power supply connected to the electrical circuit and the detector for supplying a predetermined output voltage to the detector, the power supply having first and second modes with the first mode supplying the predetermined output voltage more quickly than, but drawing more supply current than, the second mode; and switching means for switching the power supply from the first mode to the second mode.
The above summary of the present invention is not intended to represent each embodiment or every aspect of the present invention. This is the purpose of the drawings and detailed description which follow.


REFERENCES:
patent: 2808566 (1957-10-01), Douma
patent: 2832642 (1958-04-01), Lennox
patent: 2898420 (1959-08-01), Kuze
patent: 2971130 (1961-02-01), Diebold
patent: 3471784 (1969-10-01), Arndt et al.
patent: 3538241 (1970-11-01), Rein
patent: 3588611 (1971-06-01), Lambden et al.
patent: 3600502 (1971-08-01), Wagenaar et al.
patent: 3622872 (1971-11-01), Boaz et al.
patent: 3660721 (1972-05-01), Baird
patent: 3684955 (1972-08-01), Adams
patent: 3716757 (1973-02-01), Rodriguez
patent: 3746930 (1973-07-01), Van Best et al.
patent: 3775675 (1973-11-01), Freeze et al.
patent: 3789295 (1974-01-01), Balchunas et al.
patent: 3812337 (1974-05-01), Crosley
patent: 3858130 (1974-12-01), Misencik
patent: 3868549 (1975-02-01), Schaefer et al.
patent: 3869665 (1975-03-01), Kenmochi et al.
patent: 3878460 (1975-04-01), Nimmersjo
patent: 3911323 (1975-10-01), Wilson et al.
patent: 3914667 (1975-10-01), Waldron
patent: 3932790 (1976-01-01), Muchnick
patent: 3939410 (1976-02-01), Bitsch et al.
patent: 4052751 (1977-10-01), Shepard
patent: 4074193 (1978-02-01), Kohler
patent: 4081852 (1978-03-01), Coley et al.
patent: 4087744 (1978-05-01), Olsen
patent: 4130850 (1978-12-01), Cronin et al.
patent: 4156846 (1979-05-01), Harrold et al.
patent: 4166260 (1979-08-01), Gillette
patent: 4169260 (1979-09-01), Bayer
patent: 4214210 (1980-07-01), O'Shea
patent: 4233640 (1980-11-01), Klein et al.
patent: 4245187 (1981-01-01), Wagner et al.
patent: 4251846 (1981-02-01), Pearson et al.
patent: 4264856 (1981-04-01), Frierdich et al.
patent: RE30678 (1981-07-01), Van Zeeland et al.
patent: 4295021 (1981-10-01), Asinovsky et al.
patent: 4316187 (1982-02-01), Spencer
patent: 4344100 (1982-08-01), Broersma, Jr. et al.
patent: 4354154 (1982-10-01), Olsen
patent: 4356443 (1982-10-01), Emery
patent: 4378525 (1983-03-01), Burdick
patent: 4387336 (1983-06-01), Joy et al.
patent: 4459576 (1984-07-01), Fox et al.
patent: 4466071 (1984-08-01), Russell, Jr.
patent: 4477855 (1984-10-01), Nakayama et al.
patent: 4587588 (1986-05-01), Goldstein
patent: 4616200 (1986-10-01), Fixemer et al.
patent: 4631621 (1986-12-01), Howell
patent: 4639817 (1987-01-01), Cooper et al.
patent: 4642733 (1987-02-01), Schact
patent: 4644439 (1987-02-01), Taarning
patent: 4652867 (1987-03-01), Masot
patent: 4658322 (1987-04-01), Rivera
patent: 4697218 (1987-09-01), Nicolas
patent: 4702002 (1987-10-01), Morris et al.
patent: 4707759 (1987-11-01), Bodkin
patent: 4723187 (1988-02-01), Howell
patent: 4771355 (1988-09-01), Emery et al.
patent: H536 (1988-10-01), Strickland et al.
patent: H538 (1988-11-01), Betzold
patent: 4810954 (1989-03-01), Fam
patent: 4816958 (1989-03-01), Belbel et al.
patent: 4833564 (1989-05-01), Pardue et al.
patent: 4835648 (1989-05-01), Yamauchi
patent: 4839600 (1989-06-01), Kuurstra
patent: 4845580 (1989-07-01), Kitchens
patent: 4847719 (1989-07-01), Cook et al.
patent: 4853818 (1989-08-01), Emery et al.
patent: 4858054 (1989-08-01), Franklin
patent: 4866560 (1989-09-01), Allina
patent: 4878144 (1989-10-01), Nebon
patent: 4882682 (1989-11-01), Takasuka et al.
patent: 4893102 (1990-01-01), Bauer
patent: 4901183 (1990-02-01), Lee
patent: 4922368 (1990-05-01), Johns
patent: 4931894 (1990-06-01), Legatti
patent: 4939495 (1990-07-01), Peterson et al.
patent: 4949214 (1990-08-01), Spencer
patent: 4969063 (1990-11-01), Scott et al.
patent: 5010438 (1991-04-01), Brady
patent: 5047724 (1991-09-01), Boksiner et al.
patent: 5051731 (1991-09-01), Guim et al.
patent: 5121282 (1992-06-01), White
patent: 5166861 (1992-11-01), Krom
patent: 5168261 (1992-12-01), Weeks
patent: 5179491 (1993-01-01), Runyan
patent: 5185684 (1993-02-01), Beihoff et al

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electrical fault detection circuit with dual-mode power supply does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electrical fault detection circuit with dual-mode power supply, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electrical fault detection circuit with dual-mode power supply will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3008944

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.