Electricity: conductors and insulators – Boxes and housings
Reexamination Certificate
2001-05-15
2002-12-31
Nguyen, Chau N. (Department: 2831)
Electricity: conductors and insulators
Boxes and housings
C174S069000, C174SDIG009, C361S608000
Reexamination Certificate
active
06501020
ABSTRACT:
FIELD OF THE PRESENT INVENTION
The present invention relates generally to the field of shelves for supporting computer equipment in a frame or cabinet, and more particularly to the field of sliding network equipment shelves utilizing a flexible, space-saving cable management apparatus to retain and support cables in a plurality of shelf deployment positions.
BACKGROUND OF THE PRESENT INVENTION
As is well known, electrical component racks, frames and cabinets are heavily utilized to store computer equipment and other electrical equipment of a variety of types. The equipment may be mounted on or in electrical equipment support systems such as racks, frames, cabinets and the like, collectively referred to herein as “cabinets,” in a variety of ways. For example, equipment may be attached directly to the structure of a cabinet, placed on a shelf, or the like. Shelves for supporting such equipment are generally of two types: static and moveable. Static shelves are those which remain stationary with respect to the cabinet to which they are attached, while moveable shelves may be moved relative to the cabinet, usually in order to provide more convenient access to the equipment stored thereon. Moveable shelves generally take the form of sliding shelves which may be moved laterally along slides, rollers or the like, in and out of the cabinet.
A major concern with regard to moveable shelves in general, and sliding shelves in particular, is the disposition of the cables, wires and the like, referred to herein as “cables,” which are attached to the equipment stored on the shelves. As such a shelf is moved outward from the cabinet, the equipment stored thereon is likewise moved, pulling and straining the cables attached thereto with it. Obviously, the cables must therefore be arranged to provide enough slack to enable the equipment to be moved outward the desired distance. In addition, however, provision must be made to keep the cables from becoming entangled and from catching on portions of the cabinet or of other equipment as the cables are moved out, and for restoring the cables to their original positions when the equipment is moved back into the cabinet. Further, all of this cable management must take place while preserving the integrity of the power supplied through the cables or the signals likewise transmitted through the cables. Because of the difficulties inherent in such cable management, users often dispense with the extra expense of sliding or other moveable shelves altogether in favor of a static system which utilizes only static cable management apparatuses such as stationary cable raceways, wiring shelves, permanently-attached O- or D-ring brackets, or the like.
Most prior art solutions to the problem of managing cables in a moveable shelf environment utilize a hinged cable management arm attached between the rear of the shelf and the rear of the cabinet. Each arm includes a plurality of arm segments, with a typical number of segments being four, and each pair of adjacent segments is connected by a hinge. The arm is capable of gradually unfolding from a folded position, in which the segments are generally folded on top of each other, to an unfolded position, in which the segments are unfolded, sometimes to the point, or nearly the point, of forming a straight line from one end to the other.
The arm is typically disposed in one of two arrangements. In a first arrangement, the arm is connected between the rear of the shelf and a vertical mounting rail of the cabinet. In this arrangement, the folded arm extends horizontally along the rear edge of the shelf, and the folding and unfolding motion is generally co-planar with the shelf itself. In a second arrangement, the arm is connected between the rear of the shelf and a horizontal frame member installed between the vertical mounting brackets or between the shelf slide assembly attached thereto. In this arrangement, the folded arm extends vertically above or below the surface of the shelf, and the folding and unfolding motion occurs in a plane which is generally perpendicular to the plane of the shelf.
Once the hinged cable management arms are installed, cables may be routed along the arms and held in place by wrapping plastic tie wraps, Velcro® straps or buckle straps around the cables and the arm. As the shelf slides outward, the hinged cable management arm unfolds and the cables attached to it unfold in unison with the motion of the arm. As the shelf slides back inward into the cabinet, the hinged cable management arm refolds, and the cables attached to it refold in unison with the motion of the arm.
Unfortunately, horizontally and vertically hinged cable management arms both suffer from a number of disadvantages. First, both types consume a considerable amount of space behind the shelf and may obstruct air flow horizontally through the cabinet. Vertically hinged cable management arms may take up more vertical space than the equipment mounted on the shelf, thereby limiting the amount of equipment that may be stored in the cabinet or how far a shelf may be extended from the cabinet. Further, vertically hinged cable management arms require the presence of a horizontal frame member connected behind the sliding shelf Such frame members are not commonly utilized except at the bottom of the cabinet, and thus such a vertically hinged cable management arm must either be installed at the bottom of the cabinet, or else an additional horizontal frame member must be purchased and installed. In addition, the structure and operation of prior art cable management arms relative to the sliding shelves to which they are attached demands that they be mounted relatively precisely, making the installation procedure time-consuming and tedious.
Alternative solutions to the problem of managing cables in a moveable shelf environment likewise suffer from significant problems. For example, cord winders may be used to roll and unroll cables as the equipment is moved in and out. However, when installed, each cord winder occupies a significant amount of valuable space above or next to the shelf. Further, a separate cord winder must generally be utilized for each separate cable. In addition, cord winders become easily tangled as the cables become bent and kinked. Similarly, gravity-based solutions allow cables to drop into a vertical space at the back of the cabinet behind the equipment, and consume little additional space, but the weight of the cables is frequently not enough to overcome the bends and kinks which develop in the cables and prevent the cables from dropping smoothly back into the vertical space. Further, a sufficient amount of vertical space must be available to contain the retracted cables when the shelf is moved back into the cabinet and the cables are pulled by gravity down into the space.
Thus, a need exists for a cable management solution which may be easily installed, which occupies little otherwise-usable space and which operates reliably.
Another problem encountered with regard to the selection of sliding or moveable shelves for use in cabinets and other electrical equipment support systems is the difficulty of installing the shelf, its slide assemblies and any cable management apparatus. Prior art sliding shelves and their associated cable management arms are typically constructed from steel and are thus quite heavy. Further, assembly and installation of these apparatuses is fairly complex, requiring a number of members to be attached together in relatively precise locations to enable free movement of the shelf and cable management arm. In addition, installation of the shelves and cable management arms typically requires considerable use of various tools. The installation complexity and tool requirements, coupled with the heavy weight of the apparatuses, makes installation of the apparatuses prohibitively difficult for one person to handle by himself. Thus, a need exists for a sliding shelf and cable support assembly which may be easily installed by only one installer using a minimum of tools.
SUMMARY OF THE PRESENT INVENTION
Briefl
Grant James H.
McMillan, III William
Chatsworth Products, Inc.
Estrada Angel R.
Kennedy Covington Lobdell & Hickman LLP
LandOfFree
Electrical equipment and cable support assembly does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Electrical equipment and cable support assembly, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electrical equipment and cable support assembly will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2953453