Electrical distribution system having an improved bus coupler

Electrical connectors – Bus duct – Means to join bus ducts

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C174S08800C

Reexamination Certificate

active

06176720

ABSTRACT:

BACKGROUND
This invention is directed to the field of electrical conductors and more particularly to electrical bus and means for coupling electrical bus.
An electrical bus is a rigid electrical conductor that serves as a common connection between the source of electric power and the load circuits. Bus duct or busway is a prefabricated conduit used to enclose and protect bus running therethrough. Because of the power required in industrial settings, electrical bus, because it can handle heavier electrical loads, has been used in place of circuits and wiring. Ordinarily, bus duct assemblies for electrical distribution systems consist of factory assemblies of bus conductors in straight section lengths having at least one end of which is bent from straight to a spread apart position for coupling to other lengths of bus conductor by means of special fittings for joining the lengths. Prior art electrical bus has taught use of separate couplings to connect or to couple electrical bus. One of these prior art structures teaches a splice connector having multiple components, including multiple main phase connector plates, inner insulators, outer insulators, splice plate, a square-shaped bolt insulating tube for insulating a bolt, used to draw the plates together. Another discloses a connection block having conductive splicing pads that abut a bus and couple the bus to another such conductor bus, by means of hooks or the like carried by the splicing pads, the assembly held in place with bolts and dimpled washers. Other previous patents have taught use of pronged couplers for connecting adjacent bus.
U.S. Pat. No. 4,008,365 Carlson, discloses paired phases of bus duct in which a pair of different types of bus duct, each surrounded by an insulation layer, are combined e.g. an A phase combined with a B phase, or an A phase combined with a C phase type bus conductor. A neutral phase has also been shown with this type of paired phase bus conductor.
All previous attempts at coupling electrical bus require connectors that have multiple components that, in addition to adding to the cost of manufacture, add complexity to the installation. An additional problem has been the inability to carry the required electrical load needed in industrial settings. Another problem has been the difficulty in adapting standard pieces of bus and couplings to the particular dimensions of an individual job. It has been very difficult to field cut the previous bus to the appropriate lengths because the previously used bus duct, because it was not flat throughout but had spaced apart ends at at least one end of the bus conductor, had to be manually taken apart, the connectors detached, the bus individually cut, reassembled and the multi-component connectors re-attached. A further problem has been the cost associated with single-use bus which increases costs when relocating electrically powered equipment requiring installation of new bus.
SUMMARY
The present invention is directed to a bus that satisfies the needs for a reusable, easily installed and easily coupled bus that can be adjusted on site to the required dimensions and can carry a large amperage load. The present invention is directed to an electrical bus assembly having features of the present invention comprising an upper layer of flat, elongated metal bus conductor and a lower layer of flat, elongated metal housing bus conductor forming a bus pair, enclosed in a metal with insulation between the bus pair and the housing. The bus assembly consists of two layers of similar type of bus, example two layers of A phase, two layers of B phase, or two layers of C phase bus. The bus assembly where the housing is a two-piece U-shaped housing of an upper channel and a lower channel, each channel having a pair of flanges, and where the bus itself, because it is flat throughout, is coupled without the need for a separate coupler. A conductor element, having two metal buses, of similar electrical type, in contact with each other forming a bus pair, enables safe and economic conduction of the larger amperage current. The metal bus of each bus pair are positioned step-wise such that the ends of the two metal bus are not in alignment but, because they are the same length, the upper layer overlaps the lower layer at one end and underlaps the lower layer at the opposite end. This step-wise arrangement enables easy coupling of two conductor elements, each having step-wise positioned metal bus pairs, by abutting the two metal bus of the first conductor element with the two metal bus of the second conductor element, forming a pair of butt joints that are not aligned so no seam is produced. Because the upper layers and lower layers overlap at one end and underlap at the opposite end, they both abut and overlap. In this manner, the adjoining conductor elements form a joint that maintains a strong conductive element across the joint. The joined conductor elements are held in place by a two-piece clamp having a depression formed in each piece for applying additional clamping pressure at the site of the joint. The conductor elements may be field cut on-site to the desired dimensions by manually positioning the metal bus within one conductive element in alignment with each other, and cutting simultaneously through the layers with a hacksaw or other metal cutting means, as needed. The pairs of bus are then manually repositioned, forming butt joints with other conductor units, and the housing and clamp reapplied. Mylar® insulation lines the metal busway housing. Mylar® insulation also is adhered to one longitudinal side of each bus. The bus adjacent the housing is positioned so that the bus insulation lies adjacent the housing, thereby providing two layers of insulation between the bus and the housing. The bus bar pairs are positioned with the insulation side out, providing two layers of insulation between the bus pair and other metal, be that either the housing or an adjacent bus pair similarly positioned. The bus bar pairs are positioned metal to metal. The joined conductor units may be releasably attached to the building structure by means of the fasteners through apertures along two edges of the housing, and, when electrical machinery needs to be moved, the conductor elements using this bus system may be easily removed and easily reinstalled in the new location. Each conductor element may comprise a plurality of metal bus pairs, to accommodate differing amounts of electrical current sought to be transferred.
A second embodiment, for providing increased electrical loads, utilizes a pair of stationary bus conductors having a wider, thicker body, having a pair of central apertures formed therein for receipt of an insulated bolt and spaced apart by insulation discs of fiberglass board insulation material, for receipt of a slotted bus connector between the pair of stationary bus conductors. A second pair of stationary bus conductors, also having a pair of central apertures formed in each, and also in a spaced apart position, is provided for coupling to the first pair of stationary bus conductors by the slotted bus connector, the slotted connecting bus conductor being received between both the first and second pairs of stationary bus conductors. The coupling of the pair of bus conductors is held in place by means of an insulated bolt received through a central bore in the body of the pair of stationary bus conductor and the slot of the slotted bus connector.


REFERENCES:
patent: Re. 26310 (1967-11-01), Moodie et al.
patent: 3189680 (1965-06-01), Stanback
patent: 3339009 (1967-08-01), Davis et al.
patent: 3376377 (1968-04-01), Fehr
patent: 3504100 (1970-03-01), Yatabe
patent: 4097103 (1978-06-01), Krause
patent: 4842533 (1989-06-01), Beberman et al.
patent: 4886940 (1989-12-01), Gagnon et al.
patent: 4945188 (1990-07-01), Jackson
patent: 4979906 (1990-12-01), Shrout et al.
patent: 5401906 (1995-03-01), Bryant
patent: 5760339 (1998-06-01), Faulkner et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electrical distribution system having an improved bus coupler does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electrical distribution system having an improved bus coupler, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electrical distribution system having an improved bus coupler will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2478240

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.