Electric heating – Metal heating – Cutting or disintegrating
Patent
1986-02-13
1988-01-12
Scott, J. R.
Electric heating
Metal heating
Cutting or disintegrating
B23H 102
Patent
active
047193271
DESCRIPTION:
BRIEF SUMMARY
BACKGROUND OF THE INVENTION
This invention relates to an electrical discharge machining power supply and, more particularly, to an electrical discharge machining power supply with which an excellent machined surface can be obtained by stabilizing electrical discharge and improving the cut-off of electric current.
FIG. 3 is a diagram of the arrangement of a wire-cut electrical discharge machine, in which numeral 1 denotes an electrical discharge machining power supply, 2 an upper wire guide, 3 a lower wire guide, 4 an XY table, 5 a workpiece, 6 a wire electrode, 7 an X-axis servomotor, 8 a Y-axis servomotor, 9 a dielectric treating tank, 10 a CNC, and 11 a machining command tape. A wire-cut electrical discharge machine of this type is illustrated in, for example, U.S. Pat. No. 4,467,166. The electrical discharge machining power supply 1, which produces a spark discharge across the workpiece 5 and wire electrode 6, is adapted to generate a pulse-shaped voltage impressed across the wire electrode 6 and workpiece 5. The specific construction of the electrical discharge machining power supply will now be described in detail.
FIG. 4 shows a transistor-controlled capacitor discharge circuit used in the above electrical discharge machining power supply 1. The technique used here is described in, for example, "Wire-cut Electrical Discharge Machining Techniques", p. 25, edited by Nagao Saito, published by Nikkan Kogyo Shimbun. The circuit includes transistorized switching elements inserted in the charging circuit section of the discharge circuit of a capacitor C. With this circuit, the peak Ip of a discharge current can be changed by switching transistors Tr1, Tr2 through use of a control circuit. This circuit enables the power supply side and the discharge electrodes to be cut off from each other by the switching elements, so that the power supply can be opened when a discharge current is flowing between the discharge electrodes. Accordingly, in-flow of an electric current in a state where insulation recovery has not been attained can be prevented. Further, with the circuit shown in FIG. 4, the discharge current has a high peak Ip and the discharge current pulse obtained has a narrow pulse width in comparison with a transistor discharge circuit. For these reasons, the circuit is widely employed as a power supply for wire electrical discharge machines, machines for forming small holes and special-purpose machines for carbide alloys.
Thus, with a transistor-controlled capacitor discharge circuit, electrical discharge machining is possible at a high machining speed by virtue of a discharge current having a high peak value Ip and a small pulse width. Where finishing machining is concerned, however, discharge current cut-off is poor, thus leaving a trail, and the charging current of the capacitor is caused to fluctuate by leakage current across the discharge electrodes, so that stable discharge cannot be achieved.
SUMMARY OF THE INVENTION
An object of the present invention is to provide an electrical discharge machining power supply for controlling the charging current of a discharge capacitor by switching elements, which power supply enables finishing machining for an excellent surface smoothness, and in which a stable discharge is obtained by suppressing fluctuation of charging voltage.
In order to attain the object of the present invention, the present invention provides an electrical discharge machining power supply for controlling the charging current of a discharge capacitor by switching elements, the machining power supply including a small current charging circuit whose switching is controlled by a pulse having a pulse width larger than a discharge current pulse width of the discharge capacitor, a large current charging circuit connecting in parallel with the small current charging circuit and switched on the basis of a pulse having a pulse width smaller than the above mentioned pulse width, and control means for controlling operation of at least the large current charging circuit only when the small current
REFERENCES:
patent: 4376880 (1983-03-01), Inoue
patent: 4395612 (1983-07-01), Izumiya
patent: 4469927 (1984-09-01), Obara et al.
"Wire-Cut Electrical Discharge Machining Techniques", p. 25, edited by Nagao Saito, published by Nikkan Kogyo Shimbun (Japanese language).
Evans Geoffrey S.
Fanuc Ltd.
Scott J. R.
LandOfFree
Electrical discharge machining power supply does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Electrical discharge machining power supply, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electrical discharge machining power supply will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-922019