Electrical connectors – Contact comprising cutter – Resiliently biased
Reexamination Certificate
1999-07-01
2001-07-10
Luebke, Renee (Department: 2833)
Electrical connectors
Contact comprising cutter
Resiliently biased
C439S440000
Reexamination Certificate
active
06257919
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to an electrical connector having a multiple spring locking mechanism.
BACKGROUND OF THE INVENTION
The standard wire nut is a common device currently available for electrically and mechanically interconnecting two or more segments of electrical wiring. First, the individual sections of wire are twisted together and then the nut is screwed onto the wire. This procedure is usually tedious and time consuming, particularly for residential and business construction applications wherein a large number of connections are typically needed. Effectively securing the nut to the wires usually requires practiced skill and experience. As a result, labor costs tend to be high. Conventional wire nut connections also tend to be less than optimally secure. Wires are apt to loosen and become disconnected. Considerable time and effort may be required to locate and repair a defective connection.
Crimp connectors are also widely used. However, the crimping process often destroys the connector and renders it ineffective. It is usually quite difficult to perform the crimping process correctly. Moreover, the crimp connector tends to pull apart from the wire fairly easily.
Soldering electrical conductors together necessitates the use of soldering equipment, supplies and a power source. The soldering process again usually requires a measure of skill and experience. This type of electrical connection is often difficult to perform in the field.
Wire trap connectors have also been used to join segments of electrical wiring. These devices typically employ a spring clip contact mounted within a multiple piece plastic housing. Electrical wires are introduced through openings in the housing to engage the contact. The wires are held in place by respective spring clips. This device represents an improvement over previous connectors; however, it is still often possible for the wiring to separate from the connector. Moreover, in some cases, if the wiring is pulled with sufficient force, the individual parts of the housing can separate to expose the electrical contact and the ends of the wiring. This can result in failure of the wiring. Additionally, known wire trap connectors are ineffective for use with stranded wire, which lacks the rigidity needed to open the spring clip.
A need exists for a connector that is not only quick and convenient for both skilled and unskilled persons to use but also provides an improved and much more secure mechanical and electrical connection. A need also exists for a connector that can be employed in a wide variety of applications and environments.
SUMMARY OF THE INVENTION
It is therefore an object of this invention to provide an electrical connector that provides for a significantly improved locking interconnection between segments of electrical wire or other type of electrical conductor.
It is a further object of this invention to provide an electrical connector that mechanically joins respective conductive components so securely that it is virtually impossible to unintentionally disconnect the components.
It is a further object of this invention to provide an electrical connector that permits large numbers of electrical connections to be made quickly and conveniently, even by persons with little or no electrical training, and which is therefore extremely desirable for use in many various residential, commercial, industrial, marine and other applications.
It is a further object of this invention to provide an electrical connector that employs a virtually indestructible one piece enclosure which resists being pulled apart even under enormous stress.
It is a further object of this invention to provide a virtually indestructible assembly which resists being pulled apart even under enormous stress.
It is a further object of this invention to provide an electrical connector that locks sections of electrical wire securely together but which employs a convenient, optional spring release mechanism that allows the wires to be disconnected (and stranded wire to be connected), as required.
It is a further object of this invention to provide an electrical connector that improves both mechanical and electrical connection by using a spring lock that grips the conductive components at multiple locations.
It is a further object of this invention to provide an electrical connector that achieves considerable time, labor and expense savings in commercial, residential, industrial, marine and other applications.
It is a further object of this invention to provide an electrical connector that exhibits a substantial area of electrical contact and which achieves improved electrical conductivity while generating minimal heat.
It is a further object of this invention to provide an electrical connector that works effectively with virtually all types of wires and other electrical conductors, including stranded, solid and shielded wire.
It is a further object of this invention to provide an electrical connector that is extremely convenient to use and install in the field.
It is a further object of this invention to provide an electrical connector that exhibits improved durability and is virtually indestructible.
It is a further object of this invention to provide an electrical connector that may be used in a wide variety of electrical applications and connecting environments including, but not limited to wiring, plugs, fixtures, appliances, switches, receptacles and service panels.
This invention features a locking connector for electrically interconnecting first and second electrical conductors, such as first and second sections of electrical wire. An electrical contact component is electrically interengaged with the first conductor. The contact component includes first and second, spaced apart contact sections and an intermediate contact section that interconnects the first and second sections. The intermediate contact section includes an opening that receives the second conductor. A set of at least two spring locking clips are mounted to the first contact section and generally serially arranged to face away from the opening in the intermediate contact section such that the clips are sequentially and resiliently opened by introducing the second conductor through the opening. The clips are spring biased to grip the second conductor at a plurality of locations and hold the second conductor in electrical interengagement with the second contact section. As a result, the clips resist disengagement of the second conductor from the contact component.
In preferred embodiments, the device further includes an enclosure that accommodates the contact component and the spring clips. The enclosure has an inlet aligned with the opening for receiving the second conductor.
The contact component may include a unitary, conductive element. The first and second contact sections may comprise a generally parallel pair of plates. The spring clips may be secured to a first plate and spring biased to urge the conductor against the other, second plate. At least one of the spring clips may comprise a leaf spring. Each spring clip may include a first generally planar segment that engages and is connected to the first plate, a second segment that is connected to the first segment at an angle and unitary spring means for urging the second segment apart from the first segment and into gripping interengagement with the second conductor.
The first plate may carry a pair of generally parallel lips that extend transversely therefrom. The first segment of one of the clips may be interconnected between the intermediate contact section wall and one of the lips, and the first segment of the other clip may be interconnected between the pair of lips. A distal lip may extend transversely from the second plate for limiting the extent to which the second conductor may be introduced through the opening of the contact. The second plate may include guide means for locating the second conductor relative to the second plate. This guide means may comprise an elongate rib formed in the second plate.
Release hole
Cutler Stephen
Verwer Paul A.
Cutler Stephen
Gilman Alexander
Luebke Renee
Renner , Otto, Boisselle & Sklar, LLP
LandOfFree
Electrical connector with improved locking means does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Electrical connector with improved locking means, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electrical connector with improved locking means will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2555947