Electrical connectors – With vitreous-type envelope – Having bayonet-coupling contact
Reexamination Certificate
2000-05-23
2001-09-11
Sircus, Brian (Department: 2839)
Electrical connectors
With vitreous-type envelope
Having bayonet-coupling contact
C439S417000, C439S469000
Reexamination Certificate
active
06287149
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to improvements in electrical data connectors. More particularly, the present invention relates to a compact data connector with an improved connector ground shield and a multi-purpose strain relief.
BACKGROUND OF THE INVENTION
In the field of data/communications technology, information in the form of electrical signals is being transmitted at ever increasing speeds. Along with the desire to transmit information at faster data rates, the industry has also seen the need to reduce the size of hardware employed so as to increase portability and ease of use. In order to keep pace with these improvements, the interconnection technology, which includes electrical cables and electrical connectors designed to connect such hardware, has also undergone significant changes. Electrical connectors and cables are now available with are much smaller in size and capable of transmitting data at higher rates.
Continued improvement in connection technology is not without problems. When decreasing the size of electrical connectors while requiring the connectors to transmit data at higher rates, cross-talk between adjacent conductive components of the connector becomes a factor which must be addressed. Additionally, as these components are normally used in close proximity to other electronic components, the individual connector components must be shielded from electromagnetic interferences and radio-frequency interferences. These interferences can adversely affect the performance levels of the connectors especially at higher data rates.
Commonly owned U.S. Pat. Nos. 5,538,440 and 5,564,940 to Rodrigues, et al, the disclosures of which are incorporated herein by reference, disclose compact electrical connectors which provide for the termination of discrete insulated conductors of a multi-conductor cable. The connectors include an insulative connector housing supporting a plurality of electrical contacts having insulation displacing contact portions. The connector also features an internal contact shield to shield individual contact pairs from adjacent contact pairs. The shield is a die cast metallic member having horizontal and vertical walls which intersect perpendicularly in “cross” configurations to provide horizontal and vertical shielding of the contacts. The contact shield disclosed in these patents also includes an extended ground element for electrical engagement with the multi-conductor cable to maintain electrical ground continuity between the cable and the contact shield. The cable receiving end of the connector also includes a two component strain relief device which helps secure the cable in the connector. The strain relief device engages the folded back portion of the cable braid to frictionally hold the cable to the connector. A separate metallic ground clip is positioned between the strain relief device and the cable ground braid which electrically engages the extended ground element of the contact shield to establish electrical continuity between the cable braid and the contact shield.
One of the disadvantages of the above-disclosed connector is that the vertical and horizontal walls of the connector shield extend only as far as the insulation displacing contact portions of the electrical contacts. Thus, a portion of the individual conductors of the multi-conductor cable between the end of the cable braid and the insulation displacing contacts is left unshielded. Furthermore, strain relief devices of conventional connectors typically only provide the function of securing the cable to the connector. Grounding of the cable is normally accomplished by the use of one or more separate components, such as a separate ground clip as an interface between the cable ground braid and the contact shield. This adds to the complexity and cost of the connector.
Therefore, it would be desirable to provide an electrical connector which provides overall and individual shielding of the electrical contacts as well as the termination ends of the conductors engaging therewith. It would also be desirable to eliminate the requirement for separate components within the connector to ensure electrical continuity between the cable ground braid and the connector contact shield.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide an electrical connector for terminating discrete conductors of a multi-conductor cable.
It is a further object of the present invention to provide an electrical connector having a contact shield for shielding the electrical contacts of the connector as well as the discrete conductors of the multi-conductor cable engaging therewith.
It is still a further object of the present invention to provide a strain relief device for an electrical connector which in addition to securing the multi-conductor cable to the connector also provides for electrical grounding of the cable to the connector thereby eliminating the need for separate components.
In accordance with one form of the present invention, the improved electrical connector generally includes an electrically insulative contact support member having a rearward cable termination end, a plurality of electrical contacts supported thereon and an electrically conductive contact shield housing substantially surrounding the support member. Preferably, the connector also includes an electrically insulative housing which may be in the form of two halves which snap-fit together to substantially enclose the contacts and the shield. The contacts include conventional conductor termination end portions which are electrically connected to individual conductors of the multi-conductor cable. Dressing blocks may also be provided which snap-fit to the contact support member over the contact end portions to secure the conductors in place. The contacts are positioned upon the contact support member so that the termination end portions are spaced forward of the termination end of the support member to allow for a length of the separated individual conductors of the multi-conductor cable to be supported on a conductor support portion of the contact support member. The contact shield housing includes an outer wall which substantially surrounds the contacts and one or more inner walls are positioned so as to form an inner contiguous cross member to physically separate one or more contacts from the others. The contact support member includes one or more longitudinal slots between the contacts for receiving the one or more inner walls forming the cross member of the contact shield housing. Unlike prior art connectors, the outer and inner walls of the contact shield housing extend rearward beyond the contact conductor termination end portions and terminate adjacent the termination end of the contact support member. Thus, the extended contact shield not only electrically isolates the contacts but also shields a length of individual conductors supported on the conductor support portion of the contact support member positioned within the shield housing. The result is a dramatic improvement in “cross-talk” performance of the connector.
The present invention also includes a novel strain relief device positioned adjacent the termination end of the shield housing for securing the multi-conductor cable to the connector. The strain relief device is made from an electrically conductive material, preferably formed from a metallic material. The strain relief device is comprised of mirrored strain relief members which, when engaged, define a substantially circular bounded opening adjacent the termination end of the housing. The circular bounded opening is reduced in size as the strain relief members are moved toward each other to frictionally secure and electrically engage a ground braid of the multi-conductor cable. The strain relief members are preferably received in opposing slots which extend through an outer wall of the contact shield housing adjacent the termination end thereof and are in electrical communication with the shield housing. The strain relief members may also include one
Bieberich Mark
Elkhatib Hecham K.
Gruno Laura A.
Hammond Bernard H.
Hoffman & Baron LLP
Nasri Javaid
Sircus Brian
Thomas & Betts International Inc.
LandOfFree
Electrical connector having an improved connector shield and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Electrical connector having an improved connector shield and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electrical connector having an improved connector shield and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2497035