Electrical connector crimping die

Metal working – Means to assemble or disassemble – Means to assemble electrical device

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C029S751000, C029S753000, C029S748000, C029S788000, C029S796000, C029S03300H, C029S857000, C029S863000, C029S283500, C072S415000, C072S412000, C072S409140, C072S712000

Reexamination Certificate

active

06769173

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to electrical connectors and, more particularly, to a die used to crimp an electrical connector onto an electrical conductor.
2. Prior Art
U.S. Pat. No. 5,291,772 discloses a compression tool ram with an electrical connector crimping surface having a pyramid shaped section and two flat sections on opposite sides of the pyramid shaped section. Examples of other compression tools and crimping dies can be found in U.S. Pat. Nos.: 3,120,772 to Mixon Jr., 3,504,417 to Filia, 3,523,351 to Filia and 5,421,186 to Lefavour. The aforenoted patents are intended to be incorporated by reference herein in their entireties.
FCI USA, Inc. sells electrical connector crimping dies known as “W” type dies. The “W” type dies form a general circumferential crimp around a barrel section of the electrical connector. The “W” type of dies are installed primarily in what is known as an industry “D3” die retaining groove. The D3 groove is very common in mechanical hand held crimp tools such as the MD6 HYTOOL.TM. as well as hydraulic Tools such as the BAT500 BATOOL.TM. sold by FCI USA, Inc. The D3 groove can accommodate various “W” type dies and hence can crimp a multitude of conductor/connector size combinations.
U.S. Pat. No. 6,227,030, to Lefavour et al., teaches a crimp die with a positive connector stop, intended to prevent pre-crimping of connectors if a surplus of crimp force is available during the connection. Lefavour et al. also discloses a hydraulic compression tool and a crimping die removably connected to the tool. Lefavour et al. is intended to be incorporated by reference herein in its entirety.
Extruded (H-shape, C-shape, etc.) or formed sheet metal connectors are commonly known. Recently, there has been a need for these connectors to be crimped with a “W” style die, because a need has arisen for these connectors to be crimped with tools which only accept “W” style dies. These tools have a lower output force than some of their larger counterparts. Due to the lower tonnage of the tools that accept the W′ style die, the width of the die surface which plows into the connector is smaller, in order to maintain the same depth of crimp as the wider dies provide with a high tonnage tool. However, using a thinner crimp surface more than once for the same connector creates problems when crimping certain connectors. This is because by crimping only small portions of the connector, the opposite end of the connector which is not supported during the crimp operation tends to bulge outward and upward, creating a surface whose flats are angled with respect to the crimp groove surface: It is therefore very difficult for the die set to grip onto the connector to make a second crimp. This problem can be resolved in accordance with this invention
SUMMARY OF THE INVENTION
In accordance with one embodiment of the invention an electrical connector crimping die comprises a first section for removably connecting the die to an electrical connector compression tool. A second section of the die, which is connected to the first section, is provided for crimping a connector. The second section comprises a generally concave crimp projection of a given height which defines a primary crimp surface and at least one concave shaped secondary pre-crimp surface. The secondary pre-crimp surface is recessed relative to the primary crimp surface by the given height. The primary crimp surface and the secondary pre-crimp surface are arranged relative to the first section so that a major portion of the crimping force applied by the compression tool to the crimping die is applied to the primary crimp surface to crimp a first portion of the connector and so that a minor portion of the crimping force is applied to the secondary pre-crimp surface to pre-crimp a second portion of the connector.
In accordance with another embodiment of the invention an electrical connector hydraulic crimping tool is provided for crimping an electrical connector onto a conductor. The crimping tool comprises a hydraulic drive section generally adapted to provide a hydraulic crimping force to an electrical connector crimping die. The connector crimping die comprises a first section for connecting the die to the drive section of the crimping tool for movement by the drive section towards a cooperating crimping die. A second section of the crimping die is connected to the first section for crimping the connector. The second section comprises a generally concave crimp projection of a given height which defines a primary crimp surface and at least one concave shaped secondary pre-crimp surface. The secondary pre-crimp surface is recessed relative to the primary crimp surface by the given height. The primary crimp surface and the secondary pre-crimp surface are arranged relative to the first section so that a major portion of a crimping force applied by the hydraulic drive section to the connector crimping die is applied to the primary crimp surface to crimp a first portion of the connector and so that a minor portion of the crimping force is applied to the secondary pre-crimp surface to pre-crimp a second portion of the connector.
In accordance with yet another embodiment of the invention a method for crimping an electrical connector onto at least two electrical conductors comprises providing a hydraulic compression crimping tool having a connector crimping die. The connector crimping die is connected to a hydraulic drive section of the crimping tool for movement by the drive section towards a cooperating crimping die. The connector crimping die has a first section for crimping the connector.
The first section comprises a generally concave crimp projection of a given height which defines a first primary crimp surface and at least one concave shaped second pre-crimp surface. The second pre-crimp surface is recessed relative to the primary crimp surface by said given height. The process further comprises compressing the crimping die against the electrical connector with the crimping projection deforming the electrical connector to provide a full crimp and the pre-crimp surface subsequently contacting the electrical connector to provide a pre-crimp.


REFERENCES:
patent: 3120772 (1964-02-01), Mixon, Jr.
patent: 3504417 (1970-04-01), Filia
patent: 3523351 (1970-08-01), Filia
patent: 5421186 (1995-06-01), Lefavour
patent: 6227030 (2001-05-01), Lefavour et al.
patent: 6230542 (2001-05-01), Frenken

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electrical connector crimping die does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electrical connector crimping die, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electrical connector crimping die will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3354784

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.