Electrical conductors and methods of making same

Electricity: conductors and insulators – Conduits – cables or conductors – Conductor structure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06313409

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to electrical conductors. More particularly, the invention relates to electrical conductors which exhibit low resistance, spatial efficiency, low weight, good flexibility, enhanced bandwidth, minimized parasitic capacitance and inductance, and which are well suited for use, for example, in VHF and UHF transmission lines as well as in coils, solenoids, motors, and transformers.
2. State of the Art
Parent application Ser. No. 08/843,405 which is referenced above describes the general techniques known in the art for making electrical cables from helically twisted filaments, and proposes methods of twisting and drawing wire cables for enhancing the conductivity, flexibility and tensile strength of the cables. In addition to low resistance, flexibility and tensile strength, other characteristics of cables may be important depending on the application in which the cable is used. For example, the ability of a cable to remain cool during operation is often an important consideration. For cables used outdoors for power transmission, renitence to corrosion and low weight of the cable are important considerations. For cables which are subjected to repeated flexion, good flexibility as well as high fatigue strength are important. In cables which are used as leads for semiconductors and other electronic components, parasitic capacitance and inductance are important considerations.
Parent application Ser. No. 08/963,686 which is referenced above discloses cables made from plated filaments which are first twisted together and then drawn through reducing dies (or swaged), filaments which are twisted together around a core material which melts or deforms during drawing of the cable through reducing dies, filaments which are twisted around a tube prior to drawing through reducing dies, and cables which are made from combinations of these methods. The cables exhibit a conductivity comparable to cables having greater diameter and weight. The smaller diameter of the cables of the invention allows them to be used as leads for electronic components in order to achieve reduced parasitic capacitance without increased resistivity or reactance or component package size. The cold working of the cables of the invention provides them with enhanced flexibility and fatigue strength. The combination of materials used in the cables of the invention provides them with renitence to corrosion and the adverse affects of aging as well as enhanced conductivity. Cables formed with a hollow tube core can be self-cooling, or easily cooled by flowing a coolant through the hollow core. The hollow tube core also enhances fatigue strength, resists the effects of aging, and lowers the weight of the cable. Cables formed with a silver core are also self-cooling.
Both of the parent applications recognize that multi-stranded electrical cable is generally more flexible than a single strand conductor which has similar conductive capacity. It is also recognized in the parent applications that multi-stranded cables have several disadvantages compared to single strand conductors. In particular, the parent applications teach that multi-stranded cables are spatially inefficient and possess self-induced parasitic inductance because of the helical paths of the strands which are not in perfect contact with each other. It is also recognized that the helical paths of the strands results in a longer conductive path (known as the “lay effect”) and a corresponding increase in resistivity.
The physical properties of multi-stranded electrical cable also cause poor performance at very high frequencies (VHF) and ultra high frequencies (UHF). Signal losses at these frequencies are the result of multiple signal reflections along the length of a multi-stranded transmission line. Reflections occur where the cable exhibits an abrupt change in impedance due to the imperfect contact of the strands with each other. The reflected signals are typically out of phase with the transmitted signal and interfere destructively with the transmitted signal. This results in a “smearing” of signal pulses which limits the bandwidth of the transmission line.
The twisted and drawn multi-stranded wires of the parent applications maximize the spatial efficiency of a generally cylindrical conductor and achieve many other advantages as described above. However, there are certain applications where a generally cylindrical conductor is not the most spatially efficient. For example, where a conductor is wound to form a coil, a cylindrical cross-section is not necessarily the most spatially efficient.
The twisted and drawn multi-stranded wires of the parent applications also generally possess enhanced flexibility. However, certain electrical coils require relatively large diameter conductors wound to a relatively small radius. Winding a large diameter conductor to form a small diameter coil is difficult because the large diameter conductor may not have the flexibility to be wound so tightly. Use of a multi-strand conductor for such a coil introduces other problems regarding conductivity as described above. Moreover, it is usually desirable that the finished coil be inflexible. In addition, when a multi-strand conductor is formed into a non-circular cross section, individual strands are pinched irregularly such that their cross sections change along their length. This change in cross sectional shape (even if cross sectional area remains the same) increases the resistivity of the conductor (known as the “pinch effect”).
SUMMARY OF THE INVENTION
It is therefore an object of the invention to provide an electrical conductor which has low electrical resistance and which exhibits reduced parasitic capacitance and inductance.
It is also an object of the invention to provide an electrical conductor which has a structure which is spatially efficient.
It is another object of the invention to provide an electrical conductor which has a high bandwidth when used as a signal transmission line.
It is a further object of the invention to provide an electrical conductor which is well suited for use in coils, solenoids, motors, and transformers.
Another object of the invention is to provide methods of making electrical conductors and coils.
In accord with these objects which will be discussed in detail below, the electrical conductors of the present invention are made by winding several strands around a center strand and fusing the outer strands to the center strand, but not to each other. Preferably, at least the center strand is coated with a first material, wherein the coating may be melted to fuse the outer strands to the center. If desired, the outer strands may be coated with a second material which will form a eutectic melting mixture with the first material. According to a preferred embodiment, the coated strands are first twisted together and then drawn through reducing dies (or swaged) prior to brazing. The conductor may be further drawn or swaged while being subjected to brazing heat. Brazing may be enhanced through the use of reforming gas of soldering flux. The conductor thus formed has continuous, metallurgical bonding among the strands such that each outer strand is directly and continuously connected to the center strand, reducing the effects of helical conduction, but the outer strands are not bonded to each other, thereby maintaining the flexibility of stranded wire. Also, since the outer strands do not constitute separate helical conductors, the inductive effect and the associated inductive reactance, are reduced. Most importantly, the finished conductor will have much more stable performance characteristics, and the effects of multiple resistive contacts among the strands will be ameliorated, since each outer strand is solidly connected to the center strand throughout its length, allowing the conductor to be a much better conductor of signals in the VHF and UHF ranges.
According to alternate embodiments, different arrangements for generating fusing via eutectic mixtures are employed. In one alternate

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electrical conductors and methods of making same does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electrical conductors and methods of making same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electrical conductors and methods of making same will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2606737

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.