Electricity: conductors and insulators – Conduits – cables or conductors – Preformed panel circuit arrangement
Reexamination Certificate
2001-10-19
2004-03-02
Cuneo, Kamand (Department: 2827)
Electricity: conductors and insulators
Conduits, cables or conductors
Preformed panel circuit arrangement
C174S254000, C361S760000
Reexamination Certificate
active
06700074
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to electrical component housing structures and methods for their manufacture.
BACKGROUND OF THE INVENTION
Flexible foil carrier housing assemblies are well-known. These assemblies comprise a foil and a carrier housing. Electrical components, which can be resistors, capacitors, coils, transistors or the like, as well as electrical contact elements which can be mechanical, electrical or magnetic switches, contact pins or the like, are arranged on the foil and are electrically connected to conductive tracks of the foil.
It is known from prior art to provide carrier structures which shape flexible conductor foils in space and which keep said foils in that shape. For example, an interaction between carrier structures and foils of this type is described in the German laid-open document DE 44 36 523 A1 and DE 199 40 339 A1. The carrier structures according to those documents are manufactured by injection molding around the foils with a molding mass forming said carrier structure. The shape determined for the carrier structure during the injection molding determines the shape of the foil in space. Changing the shape of the foil after the carrier structure is injection molded is disadvantageously not possible.
Methods of manufacturing a foil carrier housing assembly are known from prior art.
For example, the German laid-open document DE 44 36 523 A1 shows a method for manufacturing a foil carrier housing assembly wherein at first in a first method step, a foil provided with electrical components and contact elements is partially injection molded with a molding mass, such that recesses corresponding to the component housings remain in the region of the components and the contact elements, wherein subsequently in a second method step, the foil is provided with components and/or contact elements through the recesses, and wherein finally in a third method step, the partially injection molded foil is once again injection molded with said injection molding mass whereby a carrier housing is manufactured.
The German laid-open document DE 199 40 339 A1, in turn, discloses a method for manufacturing a foil carrier housing assembly wherein the foil is injection molded with an injection molding mass within a molding tool, such that a carrier housing in the form of a lattice-like or net-like plastic casing is produced.
The methods of the above mentioned documents have in common that it is not possible to replace the foil or the electrical element in foil carrier housing assemblies manufactured according to them, which is for example necessary in the case of a defect of the foil or the component.
BRIEF SUMMARY OF THE INVENTION
The present invention provides a carrier structure comprising at least two portions, each portion being provided with at least one securing mechanism, such that the securing mechanisms can engage each other for generating a fixed spatial arrangement of said portions with respect to each other. In contrast to prior art, the carrier structure according to the invention is not fixed in its form after its manufacture, but can modify its shape by modifying the spatial arrangement of the portions with respect to each other. The respective arrangement of the portions with respect to each other is fixed by means of a securing mechanism. Since the carrier structure holds the foil and since thus each portion of the carrier structure likewise holds a part of the foil, the modification of the spatial arrangement of the portions with respect to each other involves a shaping of the flexible foil in space. Thereby, the shape of the foil in space can be modified also after the manufacture of the carrier housing.
There are different exemplary embodiments of the carrier structure. One exemplary embodiment of the carrier structure which is realized as a carrier lattice comprising enclosing frames and transversal bridges, is especially advantageous. The lattice-like or net-like structure advantageously material-saving. Furthermore, said structure provides also after the manufacture of the carrier structure portions of the foil between the enclosing frames and the transversal bridges which are accessible from outside. Thereby, also after the manufacture of the carrier structure, for example electrical components or the like can be placed on the surface of the foil.
Likewise, there are different exemplary embodiments for the securing mechanisms. For example one of mechanisms can be realized as plug-in pin and the other as plug-in socket. In this case, generating a fixed spatial arrangement between the portions of the carrier structure with respect to each other corresponds to introducing the plug-in pins into the plug-in sockets. The plug-in pins are frictionally engaged within the plug-in sockets. Therefore, the engagement between plug-in pin and the plug-in socket is removable by pulling the plug-in pin out of the plug-in socket. In case a permanent fixing of the plug-in pin within the plug-in socket has to be secured, the plug-in pin can for example be glued in the plug-in socket.
The carrier structure can hold the foil in several ways. One exemplary embodiment of the carrier structure comprises holding pins and holding openings for that purpose. The holding pins of the carrier structure and the holding openings of the foil are assigned to each other in number and arrangement. In this exemplary embodiment, the carrier structure holds the foil in that the holding pins penetrate the holding openings. In order to guarantee a fixed holding of foil by the carrier structure, the heads of the holding pins can be deformed. Moreover, the holding of the foil by the carrier structure can be realized in that the foil is glued onto the carrier structure. Likewise it is possible to manufacture the carrier structure by injection molding or casting around the foil with a molding mass. In this case, the holding of the foil by the carrier structure is effected such that the molding mass adheres to the foil. Preferably, the molding mass is plastic. As far as manufacturing methods are concerned, it is advantageous if the securing mechanisms are manufactured with the manufacture of the carrier structure since in this case, the carrier structure and the securing mechanism are manufactured in one step. After the manufacture of the carrier structure by injection molding or casting, the portions of the carrier structure are moveable with respect to each other and, so to say, kept together only by the foil. In case the portions are moved with respect to each other unintendedly, a damage to the foil in the region between the two portions of the carrier structure can result. In order to avoid this, one exemplary embodiment of the invention provides breakable bridges which connect the portions of the carrier structure. The breakable bridges prevent an unintended movement of the portions with respect to each other. They may be removed before the foil is shaped in space.
The foil can be provided with a plurality of electrical components and/or electrical contact elements. For example the electrical components are resistors, capacitors, coils, transistors or the like, and the electrical contact elements can be mechanical, electrical or magnetic switches, contact pins and the like.
Handling the manufacture of the carrier structure is especially easy if the carrier structure is plane before the foil is shaped in space. This means, that the enclosing frames, the transversal bridges and, if present, the breakable bridges of the carrier structure as well as the foil extend in a plane.
One aspect of the invention provides a method for manufacturing a component carrier structure comprising the steps of: manufacturing the carrier structure and securing mechanisms by injection molding or casting around a foil, and generating an engagement between the securing mechanisms. Thus, by adding to step of manufacturing the carrier structure by injection molding or casting around the foil one additional method step of manufacturing an engagement between the securing mechanisms, modifying the
Bauer Günter
Ehmann Stefan
Friedl Roland
Michel Kurt
Cherry GmbH
Cuneo Kamand
Fulbright & Jaworski
Patel I B
LandOfFree
Electrical component housing structures and their method of... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Electrical component housing structures and their method of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electrical component housing structures and their method of... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3195571