Electrical board securement and voltage isolation device

Electricity: electrical systems and devices – Housing or mounting assemblies with diverse electrical... – For electronic systems and devices

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C361S801000, C361S802000, C211S041170, C206S706000, C248S560000

Reexamination Certificate

active

06285556

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention generally relates to the positioning and securement of electrical apparatus. The present invention more particularly relates to a voltage isolation and vibration control device for electrical apparatus including circuit boards installed in a manufactured assembly, such as an electrical cabinet.
2. Description of the Prior Art
Apparatus and methods for positioning, securing and storing electrical components, including circuit boards used for holding electrical components such as capacitors, transformers and resistors, are generally known in the art.
A typical circuit board is provided as a generally rectangular piece of board material which has a surface area suitable for mounting electrical components such as amplifiers, switches, transformers, capacitors, microprocessors and the like. During conventional manufacturing assembly, the circuit board is mounted with a surface area positioned parallel to the back or base surface of an electrical housing, such as a metal electrical cabinet. This parallel orientation of the circuit board can substantially limit available space in the cabinet or enclosure in which the circuit board is installed.
One surface area of the circuit board typically does not have components mounted thereon and is attached directly to the interior of the metal cabinet, such as by insulative spacers which provide an offset distance between the circuit board and the enclosure. The circuit board can be mounted an offset distance of approximately 0.25 inches from the inside surface of the electrical cabinet. This direct mounting, however, can result in damage to the circuit board and its associated components. The mechanical vibrations of rotating equipment, for example, operated adjacent to the electrical cabinet can adversely impact the proper functioning of a directly mounted circuit board.
An electric generator, for example, can generate substantial and detrimental vibrational forces on its own circuitry and electrical components during its operation. With respect to the excitation and control circuitry of the generator, conventional circuit board positioning and securement techniques generally do not sufficiently account for the negative effects of mechanical vibration on the physical structure and electrical operation of the circuit board and its associated components. The rotating shaft of the electric generator produces mechanical vibrations which can cause the generator's excitation and control circuitry to malfunction. In particular, a generator which has been operated over an extended length of time tends to produce more severe mechanical vibrations during its operation, especially near the end of its expected life. In addition, generators which are installed on stationary foundations can be susceptible to vibrations including those caused by earthquakes or other similar seismic events.
Another problem associated with conventional circuit board positioning and securement is how to maintain electrical voltage isolation both between the individual circuit boards and between the circuit boards and the enclosure which contains the circuit boards. An enclosure for circuit boards is typically provided as a metal enclosure. In addition, the use of metal or another electrically conductive material to mount circuit boards directly to a metal electrical housing often does not provide sufficient electrical isolation. This insufficient voltage isolation is of particular concern for potential differences in the range of approximately 2,000 volts sustained on the circuit board.
The use of metal or another suitable material to position and secure circuit boards is also substantially more expensive than the use of plastic materials, for example, such as resinous, molded plastic. Therefore, an additional consideration is that use of metal for either securement or attachment of electrical apparatus such as circuit boards can substantially increase manufacturing and maintenance costs for the apparatus and for the larger system or assembly in which it is employed.
In summary, conventional assembly design for electrical apparatus is deficient in its ability to protect electrical components on circuit boards from the potential threat of damage or failure caused by mechanical vibration. In general, conventional electrical component securement design does not provide a convenient and economical way to establish voltage isolation for components mounted on circuit boards. Conventional electrical devices used for positioning and securement also have not focused sufficiently on economizing available space and avoiding the costs of utilizing expensive resources such as metal and similar materials.
SUMMARY OF THE INVENTION
The electrical apparatus securement and voltage isolation device of the present invention has satisfied the above-mentioned needs which arise from conventional electrical board installation.
The present invention provides a molded circuit board securement and electrical isolation device for use with at least one circuit board which is provided as a generally flat and rectangular piece. The securement and voltage isolation device of the present invention includes an open housing having a base and opposing side walls. The side walls are formed integrally with or connected to the base and are positioned transversely with respect to the base. A stiffener such as a bridge or support wall connects the opposing side walls to provide the securement and voltage isolation device of the present invention with general physical stiffness and the ability to resist the negative impact of mechanical vibration.
The opposing side walls of the device of the present invention have slots formed therein which permit the edges of a circuit board to be received generally adjacent to the side walls and to be positioned in substantial transverse alignment with respect to both the base and the opposing side walls. These slots can be formed within a set of ribs which extend from the side walls and which provide additional physical stiffness to the device. In addition, structures such as projections may be formed integrally with the base and positioned adjacent to a surface of the circuit board when the circuit board is received into the slots. These projection structures provide additional stabilization and securement of the circuit board within the housing of the present invention.
In another embodiment of the present invention, one circuit board is positioned and secured generally adjacent to at least one other circuit board in the same housing. This molded circuit board securement and voltage isolation device is provided for the securement of more than one circuit board. This device includes an open housing which has a base and opposing side walls each positioned transversely with respect to said base. A stiffener such as a bridge spans the side walls to establish a vibration tolerance for the device. Receiving structures, which may be provided as sets of slots, are formed in ribs extending from the side walls to receive first and second circuit boards generally adjacently to first and second sides of the bridge. The bridge can be replaced with a solid support wall to promote voltage isolation between circuit boards. The circuit boards are received in substantially transverse alignment with respect to the base and the opposing side walls. In addition, projections can extend from the base to further secure and stabilize the circuit boards within the housing. This embodiment of the present invention promotes effective utilization of available space used for positioning and securing multiple circuit boards.
It is therefore an object of the present invention to provide a securement and voltage isolation device which maintains board-to-board and board-to-enclosure voltage isolation.
It is a further object of the present invention to provide voltage isolation for medium voltages such as in the range of approximately 2,000 volts.
It is a still further object of the present invention to provide a device which maxim

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electrical board securement and voltage isolation device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electrical board securement and voltage isolation device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electrical board securement and voltage isolation device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2466827

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.