Electric noise absorber and method for its assembly with a...

Inductor devices – Core

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C336S174000, C336S092000

Reexamination Certificate

active

06437678

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention relates to an electric noise absorber and to a method for its fixing to an electric cable. It is known that by means of ferromagnetic material elements surrounding an electric line or cable, it is possible to reduce interference effects, particularly background electric noise.
EP 257 179 B2 discloses a noise absorber, whose ferromagnetic elements in the form of half-rings are contained in a centrally split, folding casing. At the casing through openings, through which the cable passes into and out of the casing, are fitted a plurality of teeth, which engage in the cable and fix the casing to the cable. As such noise absorbers assemblable with a cable are normally intended to be suitable for a certain cable diameter range, the teeth engage to a greater or lesser extent in the cable. The necessary clamping force must be applied on closing the casing halves. It always attempts to force the two casing halves apart and stresses the closure and the film hinges between the casing halves. In particular, this can lead to the unlocking of the casing halves, so that the two ferromagnetic material elements are not in tight engagement with one another by their joint faces, which considerably reduces the effectiveness of the noise absorber.
The applicant has therefore developed a fundamentally different system which, in place of teeth, functions with in each case a single, relatively thin, round, truncated pin, which is so flexible that it can adapt to different diameter shapes. This system operates much better than that of EP 257 179. It is intended to be further developed by the present invention.
DE 43 02 650 A1 discloses a two-part noise absorber, which has at each of the through openings in the interior of the casing two flexible cable holders, which extend via the casing parting line into the area of the facing casing half. The cable is loosely inserted between said cable holders. On closing the casing half corresponding guidance or cam faces on the other casing half act on said cable holders, bend them together and in this way firmly clamp the thus inserted line bundles. Therefore the cable holders prevent the individual conductors falling apart prior to the closing of the casing halves. However, the clamping force is here again applied through the closing of the casing halves, so that the disadvantages of the first-described construction still exist.
On assembling the noise absorber with the cable, the cable must be inserted in one of the two casing halves, so that it is located in the centrally split cable passage duct in the ferromagnetic element and consequently extends through the two casing through openings. The second casing half is then folded over and is e.g. closed by a snap-in or drop-in closure. It must be precisely ensured that the cable does not pass between the ferrite elements, which would lead to the casing bursting open or to the damage to the closure or which would make closure impossible. Thus, great attention must be paid during assembly, which is tedious.
OBJECT OF THE INVENTION
The object of the invention is to provide an electric noise absorber and a method, which facilitates the assembly of the noise absorber with a cable and makes it independent of accidents or special skill. The casing closing function is in particular to be facilitated, while improving the casing structure.
BRIEF DESCRIPTION OF THE INVENTION
The method according to the invention, in which the fundamental fixing of the cable takes place prior to the closing process on inserting the cable in one of the casing halves is advantageous for assembly in that the latter can be subdivided into two time-succeeding and/or place-succeeding steps, namely pressing in and therefore fixing of the cable in one casing half and the following step of closing the casing halves. The closure and the hinges between the two casing halves are not permanently influenced by the clamping force for fixing the cable. Even if, as is possible, fixing edges are provided on the second casing half shell between which the cable can be wedged, then the clamping force is limited to the moment of closing the casing half shells. To the extent that the cable has been pressed between the fixing edges, the system is once again free from forces. This in particular avoids that the force exerted by the cable on the casing and which attempts to force the latter apart, widens the gap between the ferromagnetic elements over the course of time, because plastics are known to have a slow flow under permanent force action.
Thus, the noise absorber according to the invention has fixing edges, which have a mutual spacing such that also the smallest cable for which the noise absorber is still intended, is jammed between the fixing edges on pressing in. Normally a noise absorber is intended for cables, whose diameter differs by roughly 2 mm. The spacing between the fixing edges should be e.g. 0.2 to 0.3 mm smaller than the smallest of said cable diameters. This ensures that also such a cable is well wedged and that the thickest cable can still be relatively easily pressed in. Through the complete avoidance of teeth, damage to the cable is prevented. The cable is only partly flattened and forms in its flexible insulating material two circumferentially directed, narrow flattened portions. There is no need to reduce the cable cross-section and it is instead only brought into the shape of an oval or an elongated hole, which as a result of the provision of individual, mutually insulated conductors in an insulating jacket can take place easily and without any damage. Even if force is exerted, e.g. when the noise absorber is caught on a piece of furniture on drawing through a cable, this does not lead to any damage to the cable, but at the most to a displacement of the noise absorber.
The fixing edges should be substantially parallel to one another, or at least should not diverge from parallelism than is ensured by the automatic locking of the cable between them. This also applies if the fixing edges or the strips or ledges carrying them are somewhat flexible in a certain area, e.g. the area projecting over and beyond the casing parting line. However, the flexibility must not be too great, so that the clamping force can be maintained without additional measures.
The fixing edges can be very narrow, but should not be sharp, so as to avoid damage to the cable on pressing in. The faces of the fixing edges should be straight and untoothed. However, a certain surface roughness is possible.
Preferably the fixing edges are constructed outside the actual casing, particularly outside the casing through openings. That part of the fixing edges projecting over and beyond the casing parting line plane can be free in front of the casing outer wall. The shape of the casing through openings is unimportant. When the casing is assembled they can be smooth circular and should have a diameter which at least corresponds to that of the largest intended cable. However, they also have a guidance function for the cable, so that the latter is appropriately oriented with respect to the ferromagnetic elements, but fulfil no axial fixing function. When the casing is closed the casing through openings on the open side of the two fixing edges have an additional radial securing effect.
Thus, the cable is definitively axially fixed by the fixing edges at the time of pressing in, namely by a mixed force and positive closure (due to the cable constriction). It is also radially positively fixed with respect to a degree of freedom (transverse to the fixing edges) and non-positively fixed in the direction perpendicular thereto, namely by frictional engagement between the fixing edges.
Thus, on closing the casing, during design and assembly the main attention can be directed at the matching of the casing to the optimum contact between the two seatings of the ferromagnetic elements. Thus, an easily assemblable, highly operationally reliable, efficient noise absorber is obtained.
Thus, in a preferred embodiment a noise absorber is obtained, which compr

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electric noise absorber and method for its assembly with a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electric noise absorber and method for its assembly with a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electric noise absorber and method for its assembly with a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2880416

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.